Kinematics - Q1 [Practice/M] (7/6/21)

Given that the velocity of a particle as a function of its displacement is $v(x)=10 e^{-x}$ and that $x=0$ when $t=0$, find:
(i) the acceleration as a function of x
(ii) x as a function of t
(iii) v as a function of t
(iv) the acceleration as a function of t

Given that the velocity of a particle as a function of its displacement is $v(x)=10 e^{-x}$ and that $x=0$ when $t=0$, find:
(i) the acceleration as a function of x
(ii) x as a function of t
(iii) v as a function of t
(iv) the acceleration as a function of t

Solution

(i) $a(x)=\frac{d v}{d t}=\frac{d v}{d x} \cdot \frac{d x}{d t}=v \frac{d v}{d x}=10 e^{-x}\left(-10 e^{-x}\right)=-100 e^{-2 x}$
[The relation $a(x)=\frac{d}{d x}\left(\frac{1}{2} v^{2}\right)$ is sometimes more convenient to use.]
(ii) $\frac{d x}{d t}=10 e^{-x}$
$\Rightarrow \int e^{x} d x=10 \int d t$
$\Rightarrow e^{x}=10 t+C$
$x=0$ when $t=0 \Rightarrow C=1$
$\Rightarrow x(t)=\ln (10 t+1)$
(iii) From (ii), $v(t)=10 e^{-\ln (10 t+1)}$
$\Rightarrow v(t)=10(10 t+1)^{-1}$
(iv) From (i) \& (ii), $a(t)=-100 e^{-2 \ln (10 t+1)}$
$\Rightarrow a(t)=-100(10 t+1)^{-2}$

Check:

$$
\begin{aligned}
& \frac{d}{d t} x(t)=\frac{1}{10 t+1}(10)=10(10 t+1)^{-1}=v(t) \\
& \frac{d}{d t} v(t)=10(-1)(10 t+1)^{-2}(10) \\
& =-100(10 t+1)^{-2}=a(t)
\end{aligned}
$$

