
 fmng.uk 

1 
 

Impulse & Momentum Exercises (Solutions) 

(8 pages; 19/3/20) 

(1**) Two particles of the same mass are travelling directly 

towards each other, on a smooth surface. Particle A has a speed 

which is  𝑘 times that of particle B (where 𝑘 > 0). 

(i) Find the condition on 𝑘 that must apply in order for A to 

change direction on impact. 

(ii) Describe the motion of the particles after they have collided, 

in the case where 𝑒 = 0. 

(iii) Describe the motion of the particles after they have collided, 

in the case where 𝑒 = 1. 

(iv) In the case where 𝑒 =
1

3
 , describe the motion of the particles 

after they have collided, for the various possible values of 𝑘. 

Solution 

 

 

Conservation of momentum ⇒ 𝑚(𝑘𝑢 − 𝑢) = 𝑚(𝑣 + 𝑤), where 𝑚 

is the mass of each particle, so that   (𝑘 − 1)𝑢 = 𝑣 + 𝑤  (1) 

By Newton's Law of Restitution,  𝑤 − 𝑣 = 𝑒(𝑘𝑢 − (−𝑢)),  

so that   𝑒𝑢(𝑘 + 1) = 𝑤 − 𝑣 (2) 
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Adding (1) & (2),  𝑢(𝑘 − 1 + 𝑒𝑘 + 𝑒) = 2𝑤  (3) 

Subtracting (2) from (1),  𝑢(𝑘 − 1 − 𝑒𝑘 − 𝑒) = 2𝑣  (4) 

 

(i) From (4), 𝑣 < 0 ⇒ 𝑘 − 1 − 𝑒𝑘 − 𝑒 < 0 (as 𝑢 > 0) 

⇒ 𝑘(1 − 𝑒) < 𝑒 + 1  

⇒ 𝑘 <
1+𝑒

1−𝑒
  , provided 𝑒 ≠ 1 (as 1 − 𝑒 > 0) 

[If 𝑒 is close enough to 1, A will reverse its direction for any value 

of 𝑘 (the bigger 𝑘 is, the closer 𝑒 has to be to 1).] 

 

(ii) When 𝑒 = 0, (4) & (3) ⇒ 𝑣 = 𝑤 =
(𝑘−1)𝑢

2
   

Thus the particles coalesce, and travel in the original direction of 

the particle with the bigger speed. 

 

(iii) When 𝑒 = 1, (4) & (3) ⇒ 𝑣 = −𝑢  and  𝑤 = 𝑘𝑢   

Thus both A and B have reversed their directions, and exchanged 

speeds. 

 

(iv) When 𝑒 =
1

3
 ,  (4) & (3) ⇒ 𝑣 =

𝑢

2
 (

2

3
𝑘 −

4

3
)  and 𝑤 =

𝑢

2
 (

4

3
𝑘 −

2

3
) 

𝑣 < 0 when 
2

3
𝑘 −

4

3
< 0 ; ie 𝑘 < 2 

𝑤 < 0 when 
4

3
𝑘 −

2

3
< 0 ; ie 𝑘 <

1

2
 

So, when 𝑘 <
1

2
 , both A and B move off to the left (in the diagram). 

When 𝑘 =
1

2
 , A moves off to the left, and B comes to rest. 
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When 
1

2
< 𝑘 < 2, A moves off to the left and B moves off to the 

right. 

When 𝑘 = 2, A comes to rest, and B moves off to the right. 

When 𝑘 > 2, both A and B move off to the right. 

 

(2**) For two balls colliding directly on a smooth surface, show 

that kinetic energy is conserved when 𝑒 = 1. 

Solution 

Let the two balls have masses 𝑚𝐴 & 𝑚𝐵 , initial speeds 𝑢𝐴 & 𝑢𝐵  and 

final speeds 𝑣𝐴 & 𝑣𝐵 (where the speeds are from left to right, and  

𝑢𝐴 > 0, with 𝑢𝐴 > 𝑢𝐵 ). 

Then, by conservation of momentum,  

𝑚𝐴𝑢𝐴 + 𝑚𝐵𝑢𝐵 = 𝑚𝐴𝑣𝐴 + 𝑚𝐵𝑣𝐵   (1) 

and, by Newton's law of impact,  
𝑣𝐵−𝑣𝐴

𝑢𝐴−𝑢𝐵
= 𝑒 = 1   (2) 

Result to prove: 
1

2
𝑚𝐴(𝑣𝐴

2 − 𝑢𝐴
2) +

1

2
𝑚𝐵(𝑣𝐵

2 − 𝑢𝐵
2) = 0   (3) 

From (1),  𝑚𝐵(𝑣𝐵 − 𝑢𝐵) = 𝑚𝐴(𝑢𝐴 − 𝑣𝐴), 

and from (2), (𝑣𝐵 + 𝑢𝐵) = (𝑢𝐴 + 𝑣𝐴). 

Then, substituting into (3), 

𝐿𝐻𝑆 =
1

2
𝑚𝐴(𝑣𝐴 − 𝑢𝐴)(𝑣𝐴 + 𝑢𝐴) +

1

2
𝑚𝐵(𝑣𝐵 − 𝑢𝐵)(𝑣𝐵 + 𝑢𝐵)  

=
1

2
𝑚𝐴(𝑣𝐴 − 𝑢𝐴)(𝑣𝐴 + 𝑢𝐴) +

1

2
𝑚𝐴(𝑢𝐴 − 𝑣𝐴)(𝑢𝐴 + 𝑣𝐴) = 0, 

as required. 
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(3***) A spaceship has a geostationary orbit about the earth (ie it 

stays above the same point on the earth's surface). An astronaut 

walks from one end of the spaceship to the other. Describe what 

happens, relative to the earth's surface. 

Solution 

Let the spaceship, excluding the astronaut, have mass M, and let 

the astronaut have mass m. Suppose that the astronaut is walking 

with velocity w relative to the spaceship, and that the spaceship 

(including the astronaut) travels at velocity v relative to the 

earth's surface, once the astronaut has started walking. 

By conservation of momentum, 

𝑀𝑣 + 𝑚(𝑣 + 𝑤) = 0    ⇒ 𝑣(𝑀 + 𝑚) = −𝑚𝑤  

and so  𝑣 = −
𝑚𝑤

(𝑀+𝑚)
 

ie the spaceship moves in the opposite direction to the motion of 

the astronaut relative to the spaceship. 

 

Consider the motion of the centre of mass of the spaceship and 

astronaut. 

Its velocity relative the the earth's surface is the weighted average 

of the velocities of the spaceship (excluding the astronaut) and 

the astronaut: 

(
𝑀

𝑀+𝑚
) 𝑣 + (

𝑚

𝑀+𝑚
) (𝑣 + 𝑤)  

= (
1

𝑀+𝑚
) (𝑀𝑣 + 𝑚𝑣 + 𝑚𝑤)  

= 𝑣 +
𝑚𝑤

𝑀+𝑚
  = 0  
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As there is no external force on the spaceship and astronaut, we 

would expect there to be no net motion of the centre of mass of 

the spaceship and astronaut. 

 

(4***) Impulse on Rod  

An impulse J is applied to one end of a thin, uniform rod of length 

2𝑎 and mass 𝑚, as shown below. Describe the resulting motion. 

 

Solution 

By conservation of linear momentum, if 𝑣 is the velocity of the 

centre of mass of the rod after the impulse, then: 

𝐽 = 𝑚𝑣   (1) 

And by conservation of angular momentum, if 𝜔 is the angular 

velocity about the centre of mass after the impulse, then 

𝑎𝐽 = 𝐼𝜔  (2), 

where 𝐼, the moment of inertia of the rod about an axis through 

the centre of mass, perpendicular to the rod =
1

3
𝑚𝑎2 

So, the motion of the rod after the impulse is a combination of a 

velocity of 𝑣 =
𝐽

𝑚
 in the direction of the impulse, together with a 

rotation about the centre of mass, with angular velocity 



 fmng.uk 

6 
 

 𝜔 =
𝑎𝐽

(
1

3
𝑚𝑎2)

 

=
3𝐽

𝑚𝑎
  

 

 

(5***) A snooker ball is hit towards a cushion, with speed 𝑣, in 

such a way that it hits each of the four sides of the table. The 

coefficient of restitution between the ball and the cushions is 𝑒. 

Investigate the speed and direction of the ball. 

Solution 

 

(a)(i) Referring to the diagram, when the ball is at A (travelling 

towards the 1st cushion), its velocity vector is (
𝑣𝑠𝑖𝑛𝜃
𝑣𝑐𝑜𝑠𝜃

), and the 

gradient of its path is 𝑐𝑜𝑡𝜃. 
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(ii) When the ball is at B (travelling towards the 2nd cushion), its 

velocity vector is (
−𝑒𝑣𝑠𝑖𝑛𝜃

𝑣𝑐𝑜𝑠𝜃
), and the gradient of its path is 

−
1

𝑒
𝑐𝑜𝑡𝜃. 

 

(iii) To find the relation between 𝜃 and 𝜙: 

(a) See note on Oblique impacts, which shows that 𝑡𝑎𝑛𝜙 = 𝑒𝑡𝑎𝑛𝜃 

(b) This can be verified by considering the slope at B: 

tan𝜙 =
𝑒𝑣𝑠𝑖𝑛𝜃

𝑣𝑐𝑜𝑠𝜃
= 𝑒𝑡𝑎𝑛𝜃  

(c) A more complicated approach is: 

𝑐𝑜𝑠𝜙 =
(

−𝑒𝑣𝑠𝑖𝑛𝜃
𝑣𝑐𝑜𝑠𝜃

).(
0
1

)

𝑣√𝑒2𝑠𝑖𝑛2𝜃+𝑐𝑜𝑠2𝜃(1)
=

𝑣𝑐𝑜𝑠𝜃

𝑣√𝑒2𝑠𝑖𝑛2𝜃+𝑐𝑜𝑠2𝜃
=

𝑐𝑜𝑠𝜃

√𝑒2𝑠𝑖𝑛2𝜃+𝑐𝑜𝑠2𝜃
  

⇒ 𝑐𝑜𝑠2𝜙 =
𝑐𝑜𝑠2𝜃

𝑒2𝑠𝑖𝑛2𝜃+𝑐𝑜𝑠2𝜃
=

1

𝑒2𝑡𝑎𝑛2𝜃+1
  

⇒ 𝑒2𝑡𝑎𝑛2𝜃 + 1 = 𝑠𝑒𝑐2𝜙 = 𝑡𝑎𝑛2𝜙 + 1  

⇒ 𝑒2𝑡𝑎𝑛2𝜃 = 𝑡𝑎𝑛2𝜙  

⇒ 𝑡𝑎𝑛𝜙 = 𝑒𝑡𝑎𝑛𝜃 (as 𝑒 > 0 and 𝜃, 𝜙 < 90°) 

 

(iv) When the ball is at C (travelling towards the 3rd cushion), its 

velocity vector is (
−𝑒𝑣𝑠𝑖𝑛𝜃
−𝑒𝑣𝑐𝑜𝑠𝜃

), and the gradient of its path is 𝑐𝑜𝑡𝜃. 

So the path at C is parallel to that at A; ie it has turned through 

180°. 

It follows that 𝛼 + 𝛽 = 180° (from the properties of parallel 

lines). 
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(v) The speed of the ball at C is √(−𝑒𝑣𝑠𝑖𝑛𝜃)2 + (−𝑒𝑣𝑐𝑜𝑠𝜃)2 

= 𝑒𝑣  

 

(vi) To find an expression for 𝛾: 

𝛾 + 𝛽 + (90 − 𝜙) = 180  

⇒ 𝛾 = 90 − 𝛽 + 𝜙 = 90 − (180 − 𝛼) + 𝜙  

= 𝛼 + 𝜙 − 90  

= (180 − 𝜃 − 𝜙) + 𝜙 − 90  

= 90 − 𝜃  

 

(vii) When the ball is at D (travelling towards the 4th cushion), its 

velocity vector is ( 𝑒2𝑣𝑠𝑖𝑛𝜃
−𝑒𝑣𝑐𝑜𝑠𝜃

), and the gradient of its path is 

−
1

𝑒
𝑐𝑜𝑡𝜃. So the path at D is parallel to that at B. 

 

(viii) When the ball is at E (travelling away from the 4th cushion), 

its velocity vector is (𝑒2𝑣𝑠𝑖𝑛𝜃
𝑒2𝑣𝑐𝑜𝑠𝜃

), and the gradient of its path is 

𝑐𝑜𝑡𝜃. So the path at E is parallel to that at A. 

 

(ix) The speed of the ball at E is  𝑒2𝑣 . 

 

 


