Hooke's Law - Q4 [6 marks] (4/6/21)

Exam Boards
OCR : Mechanics (Year 2)
MEI: Mechanics b
AQA: Mechanics (Year 1)
Edx: Mechanics 1 (Year 2)

Two elastic strings $A B$ and $B C$ are joined together at B, to form one long string. String $A B$ has natural length $4 m$ and modulus of elasticity 20 N ; string BC has natural length 2 m and modulus of elasticity $30 N$. The ends A and C of the long string are attached to two fixed points which are 10 m apart. Find the tension in the combined string. [6 marks]

Two elastic strings $A B$ and $B C$ are joined together at B, to form one long string. String AB has natural length $4 m$ and modulus of elasticity 20 N ; string BC has natural length 2 m and modulus of elasticity $30 N$. The ends A and C of the long string are attached to two fixed points which are 10 m apart. Find the tension in the combined string. [6 marks]

Solution

[Considering the force diagram for AB : by N 2 L , the reaction at A will equal the force applied by string BC at B . Call this T_{1} - this is the tension that $A B$ is under. Similarly, string $B C$ will be under tension T_{2}. By N3L, the forces that the two strings apply to each other will be equal and opposite, so that $T_{1}=T_{2}=T$, say. The tension in the combined string (determined by the reactions at A and C) will therefore be T also.]
For string AB , Hooke's law $\Rightarrow T_{1}=\frac{20 e_{1}}{4}$, where e_{1} is the extension of string AB. [1 mark]

Similarly, for string BC, $T_{2}=\frac{30 e_{2}}{2} \quad$ [1 mark]
Also $\left(4+e_{1}\right)+\left(2+e_{2}\right)=10$, so that $e_{1}+e_{2}=4$ [1 mark]

Then $T_{1}=T_{2} \Rightarrow \frac{20 e_{1}}{4}=\frac{30 e_{2}}{2}$, so that $5 e_{1}=15\left(4-e_{1}\right)$, [1 mark] and $e_{1}=3\left(4-e_{1}\right)$, so that $4 e_{1}=12$ and hence $e_{1}=3$, and $e_{2}=1$. [1 mark]

Therefore $T=5 e_{1}=15 \mathrm{~N} \quad$ [1 mark]

Note: A result [which would probably have to be proved in an exam, though possibly not for STEP] that can be applied here is that, with strings of stiffness k_{1} and k_{2} in series, the combined string has stiffness k given by $\frac{1}{k}=\frac{1}{k_{1}}+\frac{1}{k_{2}}$
In this case, $\frac{1}{k}=\frac{4}{20}+\frac{2}{30}=\frac{16}{60}$, so that $k=\frac{15}{4}$,
and $T=k\left(e_{1}+e_{2}\right)=\frac{15}{4}(4)=15 N$

