Hooke's Law - Q2 [18 marks] (4/6/21)

Exam Boards

OCR : Mechanics (Year 2)
MEI: Mechanics b
AQA: Mechanics (Year 1)
Edx: Mechanics 1 (Year 2)

A particle of mass 200 g hangs at a point Q , suspended from a fixed point P, by means of a spring of original length 20 cm and modulus of elasticity 5 N . It is pulled down to a point R, which is 35 cm below P. The particle is then released.

Ignoring any resistances to motion, find:
(i) the work done in pulling the particle down to R [7 marks]
(ii) the maximum speed of the particle after it is released, and the point at which this occurs [4 marks]
(iii) the distance of the particle below P when it reaches its maximum height, at position S, and show that the distance QS equals the distance QR [7 marks]

A particle of mass 200 g hangs at a point Q , suspended from a fixed point P, by means of a spring of original length 20 cm and modulus of elasticity 5 N . It is pulled down to a point R , which is 35 cm below P. The particle is then released.

Ignoring any resistances to motion, find:
(i) the work done in pulling the particle down to R [7 marks]
(ii) the maximum speed of the particle after it is released, and the point at which this occurs [4 marks]
(iii) the distance of the particle below P when it reaches its maximum height, at position S, and show that the distance QS equals the distance QR [7 marks]

Solution

[Note: The g in the diagram (gravity) is not to be confused with g for grams.]
(i) If e is the extension of the spring at Q (in metres),

Hooke's Law $\Rightarrow \frac{\lambda e}{l}=T=m g \Rightarrow \frac{5 e}{0.2}=(0.2)(9.8) \Rightarrow e=0.0784$ [2 marks]

Taking the zero of gravitational potential energy (GPE) to be R, the total energy of the particle at Q is:
$\mathrm{GPE}+\mathrm{EPE}+\mathrm{KE}$ (where EPE is elastic potential energy \& KE is kinetic energy)
$=(0.2)(9.8)(0.35-0.2-0.0784)+\frac{1}{2}\left(\frac{5}{0.2}\right)(0.0784)^{2}+0$
$=0.140336+0.076832+0=0.217168$ [3 marks]
The total energy of the particle at R is:
$0+\frac{1}{2}\left(\frac{5}{0.2}\right)(0.15)^{2}+0=0.28125$ [1 mark]
Thus the work done $=0.28125-0.217168=0.064082=$ 0.0641 J (3sf) [1 mark]
(ii) The maximum speed will occur when the particle is not accelerating; ie at Q , where the net force on the particle is zero [as $T=m g$ at the equilibrium position]. [1 mark]

The KE of the particle at Q will equal the work done to pull it down to R, as this is the energy gained by the particle since it was last at Q. [1 mark]

Hence $\frac{1}{2}(0.2) v^{2}=0.064082$ (where v is the maximum speed)
and $v=0.80051=0.801 \mathrm{~ms}^{-1}(3 \mathrm{sf}) \quad$ [2 marks]
(iii) Let d be the distance below P when the particle is at S .

The total energy of the particle at S is:
$(0.2)(9.8)(0.35-d)+\frac{1}{2}\left(\frac{5}{0.2}\right)(d-0.2)^{2}+0 \quad[2$ marks]
and this equals the energy at R of 0.28125 ,so that
$12.5 d^{2}-6.96 d+0.90475=0[1$ mark]
and $d=\frac{6.96 \pm \sqrt{3.2041}}{25}=0.35$ or 0.2068
Thus 0.35 corresponds to R and S is the point 20.68 cm below P . [2 marks]

This is $20+7.84-20.68=7.16 \mathrm{~cm}$ above the equilibrium position Q , whilst R is $35-(20+7.84)=7.16 \mathrm{~cm}$ below Q . [2 marks]
[The particle oscillates between R and S .]

