Hooke's Law - Q1 [10 marks] (4/6/21)

Exam Boards
OCR : Mechanics (Year 2)
MEI: Mechanics b
AQA: Mechanics (Year 1)
Edx: Mechanics 1 (Year 2)

A particle of mass 200 g is attached at the mid-point of an elastic string of natural length 0.5 m and modulus of elasticity λ, which hangs vertically between two points, 1 m apart.
(i) How far will the particle be below the top point if $\lambda=1$?
[6 marks]
(ii) Determine the minimum value of λ such that there is no slack in the string. [4 marks]

A particle of mass 200 g is attached at the mid-point of an elastic string of natural length 0.5 m and modulus of elasticity λ, which hangs vertically between two points, 1 m apart.
(i) How far will the particle be below the top point if $\lambda=1$?
[6 marks]
(ii) Determine the minimum value of λ such that there is no slack in the string. [4 marks]

Solution

(i) Let the extensions of the upper and lower parts of the string be e_{u} and e_{l}, respectively, and the tensions in the two parts T_{u} and T_{l}. Then, referring to the diagram,
$T_{u}=\frac{\lambda e_{u}}{0.25}, T_{l}=\frac{\lambda e_{l}}{0.25} \quad$ (assuming the string is not slack) [1 mark]
Equilibrium $\Rightarrow T_{u}=T_{l}+0.2 g$ [1 mark]
Also $e_{u}+e_{l}=0.5$ (1) [1 mark]
Hence $\lambda e_{u}=\lambda e_{l}+0.05 g$ [1 mark]
and so $\lambda e_{u}=\lambda\left(0.5-e_{u}\right)+0.05 g$,
giving $2 \lambda e_{u}=0.5 \lambda+0.05 g$ [1 mark]
and hence $e_{u}=\frac{0.5 \lambda+0.05 g}{2 \lambda}$
Thus when $\lambda=1, e_{u}=0.495$
and the distance below the top point is $0.25+0.495=0.745 \mathrm{~m}$ [1 mark]
(ii) The string is slack if $e_{l}<0$ [1 mark]

From (1) \& (2), $e_{l}=0.5-0.25-\frac{0.025 g}{\lambda}=0.25-\frac{0.025 g}{\lambda}$ [1 mark]
Thus we require $0.25-\frac{0.025 g}{\lambda} \geq 0$,
so that $0.25 \geq \frac{0.025 g}{\lambda}$ and $\lambda \geq 0.1 g=0.98$ [2 marks]

