Hooke's Law Overview (4/6/21)

Q1 [10 marks]

A particle of mass 200 g is attached at the mid-point of an elastic string of natural length 0.5 m and modulus of elasticity λ, which hangs vertically between two points, 1 m apart.
(i) How far will the particle be below the top point if $\lambda=1$?
[6 marks]
(ii) Determine the minimum value of λ such that there is no slack in the string. [4 marks]

Q2 [18 marks]

A particle of mass 200 g hangs at a point Q , suspended from a fixed point P, by means of a spring of original length 20 cm and modulus of elasticity 5 N . It is pulled down to a point R, which is 35 cm below P. The particle is then released.

Ignoring any resistances to motion, find:
(i) the work done in pulling the particle down to R [7 marks]
(ii) the maximum speed of the particle after it is released, and the point at which this occurs [4 marks]
(iii) the distance of the particle below P when it reaches its maximum height, at position S , and show that the distance QS equals the distance QR [7 marks]

Q3 [5 marks]

A bungee jumper of mass 80 kg is attached to a rope of original length 10 m and modulus of elasticity 1600 N . How far will he or she fall? (Take $\mathrm{g}=10$)

Q4 [6 marks]

Two elastic strings $A B$ and $B C$ are joined together at B, to form one long string. String AB has natural length $4 m$ and modulus of elasticity 20 N ; string BC has natural length 2 m and modulus of elasticity 30 N . The ends A and C of the long string are attached to two fixed points which are 10 m apart. Find the tension in the combined string.

