Geometric Distribution Q1 [10 marks] (10/6/21)

Exam Boards

OCR : Statistics (Year 1)
MEI: Statistics a
AQA: -
Edx: S1 (Year 2)

Repeated independent trials of an experiment are carried out. On each trial the probability of success is $\frac{1}{10}$.
(i) Find the probability that the 1st success occurs after the 6th trial. [2 marks]
(ii) Find the probability that the 3rd success occurs on the 6th trial. [3 marks]
(iii) Find the smallest value of n such that the probability of at least one success in n trials is more than $\frac{9}{10}$. [5 marks]

Repeated independent trials of an experiment are carried out. On each trial the probability of success is $\frac{1}{10}$.
(i) Find the probability that the 1 st success occurs after the 6 th trial. [2 marks]
(ii) Find the probability that the 3rd success occurs on the 6th trial. [3 marks]
(iii) Find the smallest value of n such that the probability of at least one success in n trials is more than $\frac{9}{10}$. [5 marks]

Solution

(i) Probability $=$ Probability that 1 st 6 trials are failures [1 mark]
$=\left(\frac{9}{10}\right)^{6}=0.53144=0.531(3 \mathrm{sf})[1 \mathrm{mark}]$
(ii) Probability $=$ Probability that there are 2 successes in the 1 st 5 trials, and then a success on the 6th trial [1 mark]
$=\binom{5}{2}\left(\frac{1}{10}\right)^{2}\left(\frac{9}{10}\right)^{3} \times \frac{1}{10}=\frac{9^{3}}{10^{5}}=0.00729[2$ marks]
(iii) Probability of at least one success in n trials
$=1-\operatorname{Prob}(n o$ successes in n trials) [1 mark]
$=1-\left(\frac{9}{10}\right)^{n}$
Then $1-\left(\frac{9}{10}\right)^{n}=\frac{9}{10} \quad[1 \mathrm{mark}]$
$\Rightarrow\left(\frac{9}{10}\right)^{n}=\frac{1}{10}$
$\Rightarrow n \ln (0.9)=\ln (0.1)$ [1 mark]
$\Rightarrow n=21.854$ [1 mark]
So n needs to be 22. [1 mark]

