Game Theory - Q3 [22 marks](28/5/21)

Exam Boards
OCR : D (Year 1)
MEI:
AQA: D (Year 1)
Edx: D2 (Year 2)

A zero-sum game is given by the following pay-off matrix (from player 1's point of view).

Player 2:	A	B	C
Player 1			
A	1	-2	2
B	3	4	-1

(i) Confirm that there is no stable solution, and find the optimal mixed strategy for player 1 , and their expected pay-off.
[12 marks]
(ii) By using the fact that the expected pay-off for player 2 will equal $-1 \times$ the expected pay-off for player 1 , find the optimal mixed strategy for player 2 . [10 marks]

A zero-sum game is given by the following pay-off matrix (from player 1's point of view).

Player 2:	A	B	C
Player 1			
A	1	-2	2
B	3	4	-1

(i) Confirm that there is no stable solution, and find the optimal mixed strategy for player 1 , and their expected pay-off.
[12 marks]
(ii) By using the fact that the expected pay-off for player 2 will equal $-1 \times$ the expected pay-off for player 1 , find the optimal mixed strategy for player 2. [10 marks]

Solution

(i)

Player 2:	A	B	C	row min.
Player 1				
B	1	-2	2	-2
col. max.	3	4	-1	(-1)

[2 marks]
As the max. of the row minima doesn't equal the min. of the col. maxima, there is no stable solution. [1 mark]

To find the strategy for player 1 :
Let p be the probability that player 1 chooses option A.

Then the expected pay-off for player 1 if player 2 chooses A is: $p+3(1-p)=3-2 p$ [1 mark]

If player 2 chooses B it is: $-2 p+4(1-p)=4-6 p$ [1 mark] And if player 2 chooses C it is: $2 p-(1-p)=3 p-1$ [1 mark] The diagram below shows the lines $y=3-2 p, y=4-$ $6 p$ and $y=3 p-1$

[2 marks]
The optimal value of p occurs when $\min (3-2 p, 4-6 p, 3 p-1)$ is maximised, and this occurs at the intersection of the lines $y=4-6 p$ and $y=3 p-1$ [2 marks] ie when $4-6 p=3 p-1 \Rightarrow 5=9 p ; p=\frac{5}{9}$ [1 mark]
and the expected pay-off for player 1 is $4-6\left(\frac{5}{9}\right)=\frac{2}{3}$ [1 mark]
(ii) To find the strategy for player 2 :

Let q be the probability that player 2 chooses option A, and r the probability that they choose option B; so that they choose option C with probability
$1-q-r$.
Then the expected pay-off for player 2 if player 1 chooses A is:
$(-1) q+2 r-2(1-q-r)=q-2+4 r[2$ marks $]$

If player 1 chooses B it is: $-3 q-4 r+(1-q-r)=-4 q-5 r+$ 1 [1 mark]

The probability rule is chosen in such a way that the expected pay-offs are the same, whichever option player 1 chooses, and both are equal to the value of the game from player 2's point of view, which is known to be $-\frac{2}{3}$. [2 marks]

So $q+4 r-2=-\frac{2}{3}$ and $-4 q-5 r+1=-\frac{2}{3}$ [2 marks]
$\Rightarrow 3 q+12 r-6=-2$ or $3 q+12 r=4$
and $-12 q-15 r+3=-2$ or $12 q+15 r=5$
Then $4 \times(1)-(2) \Rightarrow 33 r=11 ; r=\frac{1}{3} \Rightarrow q=0$ [2 marks]
So the probability rule for player 2 is:
Choose A with probability 0

Choose B with probability $\frac{1}{3}$
Choose C with probability $\frac{2}{3}$ [1 mark]

