Game Theory – Q2 [12 marks](28/5/21)

Exam Boards

OCR : D (Year 1)

MEI: -

AQA: D (Year 1)

Edx: D2 (Year 2)

A zero-sum game is given by the following pay-off matrix (from player 1's point of view). Confirm that there is no stable solution, and find the optimal mixed strategy for each player, and their expected pay-offs.

Player 2:	А	В
Player 1		
А	2	3
В	4	-1

[12 marks]

A zero-sum game is given by the following pay-off matrix (from player 1's point of view). Confirm that there is no stable solution, and find the optimal mixed strategy for each player, and their expected pay-offs.

Player 2:	А	В
Player 1		
Α	2	3
В	4	-1

[12 marks]

Solution

Player 2:	A	В	row min.
Player 1			
Α	2	3	(2)
В	4	-1	-1
col. max.	4	(3)	

[2 marks]

As the max. of the row minima doesn't equal the min. of the col. maxima, there is no stable solution. [1 mark]

Let *p* be the probability that player 1 chooses option A.

Then the expected pay-off for player 1 if player 2 chooses A is:

$$2p + 4(1 - p) = 4 - 2p$$
 [1 mark]

and if player 2 chooses B it is:

3p + (-1)(1-p) = 4p - 1 [1 mark]

The optimal value of p occurs when min(4 - 2p, 4p - 1) is maximised, and this occurs at the intersection of the lines y = 4 - 2p and y = 4p - 1 [1 mark]

ie when $4 - 2p = 4p - 1 \Rightarrow 6p = 5; p = \frac{5}{6}$ [1 mark]

and the expected pay-off for player 1 is $4 - 2\left(\frac{5}{6}\right) = \frac{7}{3}$ [1 mark]

Similarly, let q be the probability that player 2 chooses option A.

Then the expected pay-off for player 2 if player 1 chooses A is:

$$(-2)q + (-3)(1-q) = q - 3$$
 [1 mark]

and if player 1 chooses B it is:

(-4)q + (1)(1-q) = 1 - 5q [1 mark]

The optimal value of q occurs when min(q - 3, 1 - 5q) is maximised, and this occurs at the intersection of the lines y = q - 3 and y = 1 - 5q

ie when $q - 3 = 1 - 5q \Rightarrow 6q = 4$; $q = \frac{2}{3}$ [1 mark]

and the expected pay-off for player 2 is $\frac{2}{3} - 3 = -\frac{7}{3}$ [1 mark]

 $[-1 \times \text{player 1's expected pay-off, as would be expected}]$