Game Theory - Q2 [12 marks](28/5/21)

Exam Boards
OCR : D (Year 1)
MEI:
AQA: D (Year 1)
Edx: D2 (Year 2)

A zero-sum game is given by the following pay-off matrix (from player 1's point of view). Confirm that there is no stable solution, and find the optimal mixed strategy for each player, and their expected pay-offs.

| Player 2: | A | B |
| :--- | :--- | :--- |
| Player 1 |  |  |
| A | 2 | 3 |
| B | 4 | -1 |

[12 marks]

A zero-sum game is given by the following pay-off matrix (from player 1's point of view). Confirm that there is no stable solution, and find the optimal mixed strategy for each player, and their expected pay-offs.

| Player 2: | A | B |
| :--- | :--- | :--- |
| Player 1 |  |  |
| A | 2 | 3 |
| B | 4 | -1 |

[12 marks]

## Solution

| Player 2: | A | B | row <br> min. |
| :--- | :--- | :--- | :--- |
| Alayer 1 |  |  |  |
| B | 2 | 3 | $(2)$ |
| col. max. | 4 | -1 | -1 |

[2 marks]
As the max. of the row minima doesn't equal the min. of the col. maxima, there is no stable solution. [1 mark]

Let $p$ be the probability that player 1 chooses option A.
Then the expected pay-off for player 1 if player 2 chooses A is:
$2 p+4(1-p)=4-2 p$ [1 mark]
and if player 2 chooses B it is:
$3 p+(-1)(1-p)=4 p-1 \quad[1$ mark]

The optimal value of $p$ occurs when $\min (4-2 p, 4 p-1)$ is maximised, and this occurs at the intersection of the lines $y=4-$ $2 p$ and $y=4 p-1$ [1 mark]
ie when $4-2 p=4 p-1 \Rightarrow 6 p=5 ; p=\frac{5}{6} \quad[1$ mark]
and the expected pay-off for player 1 is $4-2\left(\frac{5}{6}\right)=\frac{7}{3}$ [1 mark]

Similarly, let $q$ be the probability that player 2 chooses option A.
Then the expected pay-off for player 2 if player 1 chooses $A$ is:
$(-2) q+(-3)(1-q)=q-3[1$ mark]
and if player 1 chooses B it is:
$(-4) q+(1)(1-q)=1-5 q$ [1 mark]

The optimal value of $q$ occurs when $\min (q-3,1-5 q)$ is maximised, and this occurs at the intersection of the lines $y=q-$ 3 and $y=1-5 q$ ie when $q-3=1-5 q \Rightarrow 6 q=4 ; q=\frac{2}{3} \quad$ [1 mark] and the expected pay-off for player 2 is $\frac{2}{3}-3=-\frac{7}{3}$ [1 mark]
[ $-1 \times$ player 1 's expected pay-off, as would be expected]

