Friction - Q3 [9 marks](3/6/21)

Exam Boards

OCR : Mechanics (Year 2)
MEI: Mechanics a
AQA: Mechanics (Year 2)
Edx: Mechanics 2 (Year 2)

A uniform block of mass m rests on a table, and a force P is applied at D , as shown in the diagram. The block has length $2 x$ and height x. The coefficient of friction between the block and the table is μ.

(i) If the block is on the point of sliding, find an expression for P.
[3 marks]
(ii) If instead the block is on the point of toppling, find an expression for P. [3 marks]
(iii) If the block is to topple before it slides, find a condition on μ. [3 marks]

A uniform block of mass m rests on a table, and a force P is applied at D , as shown in the diagram. The block has length $2 x$ and height x. The coefficient of friction between the block and the table is μ.

(i) If the block is on the point of sliding, find an expression for P .
[3 marks]
(ii) If instead the block is on the point of toppling, find an expression for P. [3 marks]
(iii) If the block is to topple before it slides, find a condition on μ. [3 marks]

Solution

(i) The normal reaction, $R=m g+P \sin \theta$

The frictional force $=\mu(m g+P \sin \theta)$ [1 mark]
Hence, at the point of sliding, $\mu(m g+P \sin \theta)=P \cos \theta,[1$ mark] so that $P(\cos \theta-\mu \sin \theta)=\mu m g$
and $P=\frac{\mu m g}{\cos \theta-\mu \sin \theta}$ [1 mark]
(ii) If the block is on the point of toppling, it will be about A , and the only reaction on the block will be at A . [This will be a combination of a normal reaction and friction.] [1 mark]

As the block is uniform, its weight will act at a distance x from AD, and so, taking moments about A ,
$(m g) x=(P \cos \theta) x[1 \mathrm{mark}]$
[the normal reaction and friction contribute nothing, as they act at $\mathrm{A}]$

Hence $P=\frac{m g}{\cos \theta}$ [1 mark]
(iii) At the critical position where the block is about to both slide and topple,
$P=\frac{\mu m g}{\cos \theta-\mu \sin \theta}=\frac{m g}{\cos \theta}$ [1 mark]
so that $\mu \cos \theta=\cos \theta-\mu \sin \theta$;
$\mu(\cos \theta+\sin \theta)=\cos \theta$
and $\mu=\frac{\cos \theta}{\cos \theta+\sin \theta}=\frac{1}{1+\tan \theta} \quad$ [1 mark]

So, if the block is to topple before it slides, we require
$\mu>\frac{1}{1+\tan \theta}$ [ie making the frictional force greater] [1 mark]
[reasonableness check: if $\theta=45^{\circ}$, then $\mu>0.5$; also, if θ is reduced to 30°, we would expect a higher value of μ to be necessary, in order for toppling to occur first (since the block is now more prone to slide than topple), and the condition gives $\mu>$ $\left.\frac{1}{1+\frac{1}{\sqrt{3}}}=0.634\right]$

