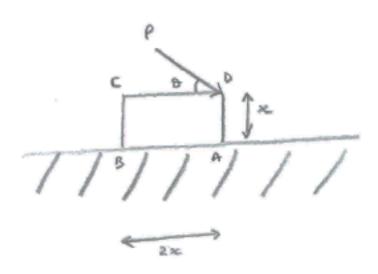
Friction – Q3 [9 marks](3/6/21)

Exam Boards


OCR : Mechanics (Year 2)

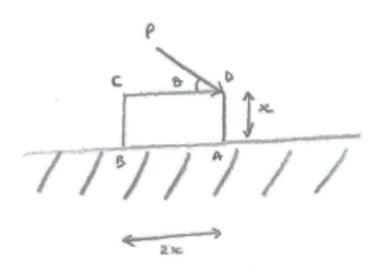
MEI: Mechanics a

AQA: Mechanics (Year 2)

Edx: Mechanics 2 (Year 2)

A uniform block of mass m rests on a table, and a force P is applied at D, as shown in the diagram. The block has length 2xand height x. The coefficient of friction between the block and the table is μ .

(i) If the block is on the point of sliding, find an expression for P.


[3 marks]

(ii) If instead the block is on the point of toppling, find an expression for P. [3 marks]

(iii) If the block is to topple before it slides, find a condition on μ .

[3 marks]

A uniform block of mass m rests on a table, and a force P is applied at D, as shown in the diagram. The block has length 2x and height x. The coefficient of friction between the block and the table is μ .

(i) If the block is on the point of sliding, find an expression for P.

[3 marks]

(ii) If instead the block is on the point of toppling, find an expression for P. [3 marks]

(iii) If the block is to topple before it slides, find a condition on μ .

[3 marks]

Solution

(i) The normal reaction, $R = mg + Psin\theta$

The frictional force = $\mu(mg + Psin\theta)$ [1 mark]

Hence, at the point of sliding, $\mu(mg + Psin\theta) = Pcos\theta$, [1 mark]

so that $P(cos\theta - \mu sin\theta) = \mu mg$

and $P = \frac{\mu mg}{\cos\theta - \mu \sin\theta}$ [1 mark]

(ii) If the block is on the point of toppling, it will be about A, and the only reaction on the block will be at A. [This will be a combination of a normal reaction and friction.] [1 mark]

As the block is uniform, its weight will act at a distance *x* from AD, and so, taking moments about A,

 $(mg)x = (Pcos\theta)x$ [1 mark]

[the normal reaction and friction contribute nothing, as they act at A]

Hence $P = \frac{mg}{\cos\theta}$ [1 mark]

(iii) At the critical position where the block is about to both slide and topple,

$$P = \frac{\mu mg}{\cos\theta - \mu \sin\theta} = \frac{mg}{\cos\theta} [1 \text{ mark}]$$

so that $\mu \cos\theta = \cos\theta - \mu \sin\theta$;
 $\mu(\cos\theta + \sin\theta) = \cos\theta$
and $\mu = \frac{\cos\theta}{\cos\theta + \sin\theta} = \frac{1}{1 + \tan\theta} [1 \text{ mark}]$

So, if the block is to topple before it slides, we require

 $\mu > \frac{1}{1+tan\theta}$ [ie making the frictional force greater] [1 mark]

[reasonableness check: if $\theta = 45^{\circ}$, then $\mu > 0.5$; also, if θ is reduced to 30°, we would expect a higher value of μ to be necessary, in order for toppling to occur first (since the block is now more prone to slide than topple), and the condition gives $\mu > \frac{1}{1} = 0.634$]

$$1 + \frac{1}{\sqrt{3}}$$