Q1 [4 marks]

A sledge with a child onboard is being pulled along on level ground, at a constant speed, by means of a rope inclined at 30° to the horizontal. The sledge and child together have a mass of 100 kg . The coefficient of friction between the sledge and the ground is $\frac{1}{10}$. Assuming that $g=10$, find the tension in the rope.

Q2 [Problem/M]

A block rests on a slope which is angled at θ° to the horizontal. The coefficient of friction between the surface of the slope and the block is $\tan \alpha . P_{1}$ is the horizontal force that needs to be applied to the block to stop it from slipping down the slope, whilst P_{2} is the greatest horizontal force that can be applied without the block slipping up the slope.
(i) Show that $\frac{P_{2}}{P_{1}}=\frac{\tan (\theta+\alpha)}{\tan (\theta-\alpha)}$
(ii) Explain what happens when $\theta<\alpha$

Q3 [9 marks]

A uniform block of mass m rests on a table, and a force P is applied at D , as shown in the diagram. The block has length $2 x$ and height x. The coefficient of friction between the block and the table is μ.

(i) If the block is on the point of sliding, find an expression for P .
[3 marks]
(ii) If instead the block is on the point of toppling, find an expression for P. [3 marks]
(iii) If the block is to topple before it slides, find a condition on μ. [3 marks]

Referring to the diagram, A is a smooth pulley of mass 2 kg , which can move up and down; B is a smooth, fixed pulley, and C is a block of mass 1 kg , which is initially held at rest on a table. A light inextensible rope is fixed at D, and leads to C, via the two pulleys. C is now released and accelerates at $2 \mathrm{~ms}^{-1}$. Find the coefficient of friction, μ between C and the table.

