Forces - Q7 [8 marks] (2/6/21)

Exam Boards
OCR : AL (Year 1)
MEI: AL (Year 1)
AQA: AL (Year 1)
Edx: AL (Year 1)

A man is in a lift, which is moving downwards with an acceleration of $0.4 \mathrm{~ms}^{-1}$. The lift is suspended by a cable, and the man is holding a parcel by a light string, as in the diagram. The masses of the lift, man and parcel are $300 \mathrm{~kg}, 80 \mathrm{~kg}$ and 5 kg , respectively.

(i) Find:
(a) the tension in the cable [2 marks]
(b) the reaction between the man and the floor of the lift [2 marks]
(c) the tension in the string [2 marks]
(ii) Does the man feel heavier or lighter than he would if the lift were stationary and he were no longer carrying the parcel?
[2 marks]

A man is in a lift, which is moving downwards with an acceleration of $0.4 \mathrm{~ms}^{-1}$. The lift is suspended by a cable, and the man is holding a parcel by a light string, as in the diagram. The masses of the lift, man and parcel are $300 \mathrm{~kg}, 80 \mathrm{~kg}$ and 5 kg , respectively.

(i) Find:
(a) the tension in the cable [2 marks]
(b) the reaction between the man and the floor of the lift [2 marks]
(c) the tension in the string [2 marks]
(ii) Does the man feel heavier or lighter than he would if the lift were stationary and he were no longer carrying the parcel?
[2 marks]

Solution

(a) Considering the lift, man and parcel as a single object:

[T_{C} and 385 g are the external forces]
$N 2 L \Rightarrow 385 g-T_{C}=385(0.4)$, where T_{C} is the tension in the cable [1 mark]
[any new symbols introduced need to be defined in an exam answer]
$\Rightarrow T_{C}=385(9.8-0.4)=3619 N$ [1 mark]
(b) Considering the forces on the lift:

$N 2 L \Rightarrow 300 g+R-3619=300(0.4)$, where R is the reaction between the man and the floor [1 mark]
$\Rightarrow R=3619+120-300(9.8)=799 N[1$ mark]
(c) Considering the forces on the man:
$N 2 L \Rightarrow 80 g+T_{S}-799=80(0.4)$, where T_{S} is the tension in the string [1 mark]
$\Rightarrow T_{S}=799+32-80(9.8)=47 N$ [1 mark]
[Check: Considering the forces on the parcel:

$N 2 L \Rightarrow 5 g-T_{S}=5(0.4)$
$\left.\Rightarrow T_{S}=5(9.8)-2=47 N\right]$
(ii) If the lift is stationary and the man is not carrying the parcel, the reaction between himself and the floor is just his weight [see note below]: 80(9.8) $=784 N$ [1 mark]

Thus he feels heavier, as $799>784$. [1 mark]
[The apparent gravity is now $9.8-0.4=9.4$, but the man's weight has effectively been increased by 5 kg , giving a net apparent weight of
$85 \times 9.4=799 N($ this is a check on (b))]
Note: In the stationary situation (with no parcel),
$N 2 L \Rightarrow 80 g-R^{\prime}=0 \Rightarrow R^{\prime}=80 g$; ie the man's weight

