Forces - Q5 [Practice/M] (2/6/21)
[Alternative Moments Methods]

A $\operatorname{rod} A B$ is attached to a wall at A, and held in a horizontal position by a rope $B C$.

Show that, as an alternative to resolving forces horizontally and vertically, and taking moments about A, it is also possible to:
(a) resolve forces horizontally and take moments about $A \& B$, or (b) take moments about $A, B \& C$; but that it is not possible to do the following:
(c) resolve forces vertically and take moments about $A \& B$, or (d) take moments about A, B \& the midpoint of $A B$
[Alternative Moments Methods]

A $\operatorname{rod} A B$ is attached to a wall at A, and held in a horizontal position by a rope $B C$.

Show that, as an alternative to resolving forces horizontally and vertically, and taking moments about A, it is also possible to:
(a) resolve forces horizontally and take moments about $A \& B$, or (b) take moments about $A, B \& C$; but that it is not possible to do the following:
(c) resolve forces vertically and take moments about $A \& B$, or (d) take moments about $A, B \&$ the midpoint of $A B$

Solution

Resolving forces horizontally and vertically,
$F=T \cos \theta(1) \& W=G+T \sin \theta$
Taking moments about A gives $(T \sin \theta) a-W\left(\frac{a}{2}\right)=0$
Then (3) $\Rightarrow T=\frac{W}{2 \sin \theta}$
and hence $(1) \Rightarrow F=\frac{W \cot \theta}{2}$
and $(2) \Rightarrow G=W-\frac{W}{2}=\frac{W}{2}$

Following method (a) instead,
resolving horizontally gives $F=T \cos \theta$ (4);
taking moments about A gives $(T \sin \theta) a-W\left(\frac{a}{2}\right)=0$
and taking moments about B gives $-G a+W\left(\frac{a}{2}\right)=0$
Then from (6), $G=\frac{W}{2}$;
from (5), $T=\frac{W}{2 \sin \theta}$,
and from (4), $F=\frac{W \cot \theta}{2}$

Following method (b) instead,
taking moments about A gives $(T \sin \theta) a-W\left(\frac{a}{2}\right)=0$
taking moments about B gives $-G a+W\left(\frac{a}{2}\right)=0 \quad$ (8),
and taking moments about C gives
$F(\operatorname{atan} \theta)-W\left(\frac{a}{2}\right)=0$
Then from (8), $G=\frac{W}{2}$;
from (7), $T=\frac{W}{2 \sin \theta}$,
and from (9), $F=\frac{W \cot \theta}{2}$

However, following method (c):
resolving vertically gives $W=G+T \sin \theta(10)$;
taking moments about A gives $(T \sin \theta) a-W\left(\frac{a}{2}\right)=0$
and taking moments about B gives $-G a+W\left(\frac{a}{2}\right)=0$
but we have no equation involving F

Also, following method (d):
taking moments about A gives $(T \sin \theta) a-W\left(\frac{a}{2}\right)=0$
taking moments about B gives $-G a+W\left(\frac{a}{2}\right)=0$
and taking moments about the midpoint of $A B$ gives $-G\left(\frac{a}{2}\right)+(T \sin \theta)\left(\frac{a}{2}\right)=0$,
and once again we have no equation involving F

