Forces – Q5 [Practice/M] (2/6/21)

[Alternative Moments Methods]

A rod *AB* is attached to a wall at *A*, and held in a horizontal position by a rope *BC*.

Show that, as an alternative to resolving forces horizontally and vertically, and taking moments about *A*, it is also possible to:

(a) resolve forces horizontally and take moments about A & B,

or (b) take moments about *A*, *B* & *C*;

but that it is not possible to do the following:

(c) resolve forces vertically and take moments about A & B,

or (d) take moments about A, B & the midpoint of AB

[Alternative Moments Methods]

A rod *AB* is attached to a wall at *A*, and held in a horizontal position by a rope *BC*.

Show that, as an alternative to resolving forces horizontally and vertically, and taking moments about *A*, it is also possible to:

(a) resolve forces horizontally and take moments about A & B,

or (b) take moments about *A*, *B* & *C*;

but that it is not possible to do the following:

(c) resolve forces vertically and take moments about A & B,

or (d) take moments about A, B & the midpoint of AB

Solution

Resolving forces horizontally and vertically,

 $F = T\cos\theta$ (1) & $W = G + T\sin\theta$ (2)

Taking moments about *A* gives $(Tsin\theta)a - W\left(\frac{a}{2}\right) = 0$ (3)

Then (3) $\Rightarrow T = \frac{W}{2sin\theta}$

and hence (1) $\Rightarrow F = \frac{W \cot \theta}{2}$ and (2) $\Rightarrow G = W - \frac{W}{2} = \frac{W}{2}$

Following method (a) instead, resolving horizontally gives $F = T\cos\theta$ (4); taking moments about *A* gives $(T\sin\theta)a - W\left(\frac{a}{2}\right) = 0$ (5), and taking moments about *B* gives $-Ga + W\left(\frac{a}{2}\right) = 0$ (6) Then from (6), $G = \frac{W}{2}$; from (5), $T = \frac{W}{2\sin\theta}$, and from (4), $F = \frac{W\cot\theta}{2}$

Following method (b) instead,

taking moments about *A* gives $(Tsin\theta)a - W\left(\frac{a}{2}\right) = 0$ (7); taking moments about *B* gives $-Ga + W\left(\frac{a}{2}\right) = 0$ (8),

and taking moments about C gives

 $F(atan\theta) - W\left(\frac{a}{2}\right) = 0 \quad (9)$ Then from (8), $G = \frac{W}{2}$; from (7), $T = \frac{W}{2sin\theta}$, and from (9), $F = \frac{Wcot\theta}{2}$ However, following method (c): resolving vertically gives $W = G + Tsin\theta$ (10); taking moments about *A* gives $(Tsin\theta)a - W\left(\frac{a}{2}\right) = 0$ (11), and taking moments about *B* gives $-Ga + W\left(\frac{a}{2}\right) = 0$ (12), but we have no equation involving *F*

Also, following method (d):

taking moments about *A* gives $(Tsin\theta)a - W\left(\frac{a}{2}\right) = 0$ (13); taking moments about *B* gives $-Ga + W\left(\frac{a}{2}\right) = 0$ (14), and taking moments about the midpoint of *AB* gives

$$-G\left(\frac{a}{2}\right) + (Tsin\theta)\left(\frac{a}{2}\right) = 0,$$

and once again we have no equation involving F