Forces - Q3 [Problem/M](2/6/21)
(i) Which of the following systems of forces could be in equilbrium? (with X, Y and $\mathrm{Z}>0$)
(a)

(ii) Assuming that $X+Y=Z$, show that the total moments about A, B and C are equal, in both of the cases in (i).
(i) Which of the following systems of forces could be in equilbrium? (with X, Y and $\mathrm{Z}>0$)
(a)

(ii) Assuming that $X+Y=Z$, show that the total moments about A, B and C are equal, in both of the cases in (i).

Solution

(i) (a) Vertical equilibrium requires that $X+Y=Z$.

For rotational equilibrium, taking moments about $\mathrm{B}, 2 d Y-d X=$ 0 , so that $X=2 Y$.

Thus there is equilibrium provided that $Y=\frac{X}{2}$ and $Z=\frac{3 X}{2}$.
[Note: As about to be shown in (ii), we can take moments about any point, provided that $X+Y=Z$]
(b) If we take moments about B, we obtain $-d X-2 d Z$, which cannot equal zero. Thus the system cannot be in equilibrium.
[With 3 forces, the directions of the forces must alternate for equilibrium to be possible.]
(ii) (a) $M(A): 3 d Y-d Z=3 d Y-d(X+Y)=d(2 Y-X)$
$M(B): 2 d Y-d X=d(2 Y-X)$
$M(C): 2 d Z-3 d X=2 d(X+Y)-3 d X=d(2 Y-X)$
(b) $M(A): d Y-3 d Z=d Y-3 d(X+Y)=-d(3 X+2 Y)$
$M(B):-d X-2 d Z=-d X-2 d(X+Y)=-d(3 X+2 Y)$
$M(C):-2 d Y-3 d X=-d(3 X+2 Y)$
[Thus the total moment will be the same about any point, provided that the forces balance; regardless of whether there is rotational equilibrium.]

