Forces - Q2 [Practice/M] (2/6/21)

Vertical forces of $\mathrm{X}, 30$ and 10 N are applied to a light rod of length 1 m , as shown in the diagram. The force of $\mathrm{X} N$ is applied at a distance of $d \mathrm{~m}$ from the left-hand end, and the force of 30 N is applied at the mid-point of the rod.

(a) What values must X and d have in order for the rod to be in equilbrium?
(b) The force of X N is removed, and the forces of 30 N and 10 N are to be replaced with a single force having the same effect as these two forces. What is the size and line of action of this single force?

Vertical forces of $\mathrm{X}, 30$ and 10 N are applied to a light rod of length 1 m , as shown in the diagram. The force of $\mathrm{X} N$ is applied at a distance of $d \mathrm{~m}$ from the left-hand end, and the force of 30 N is applied at the mid-point of the rod.

(a) What values must X and d have in order for the rod to be in equilbrium?
(b) The force of X N is removed, and the forces of 30 N and 10 N are to be replaced with a single force having the same effect as these two forces. What is the size and line of action of this single force?

Solution

(a) Vertical equilbrium $\Rightarrow X+10=30 \Rightarrow X=20$

Taking moments about the right-hand end (for example):
$30(0.5)-20(1-d)=0 \Rightarrow-5+20 d=0 \Rightarrow d=0.25$
[Whenever the forces are balanced, the total moment will be the same about any point; eg taking moments about the mid-point instead:
$10(0.5)-20(0.5-d)=0 \Rightarrow-5+20 d=0$, as before
or, about the point where X is applied:
$10(1-d)-30(0.5-d)=0 \Rightarrow-5+20 d=0]$
(b) From (a), X counteracts the effect of the other two forces to give equilibrium.

Now a force of 20 N acting at the same position as X , but in the opposite direction, will also be counteracted by X. Hence it follows that this force is equivalent to the forces of 30 N and 10 N .

Thus the two systems shown below are equivalent.

Alternative method:
The single equivalent force must be of magnitude 20 N , acting downwards (this being the net effect of the two forces). Suppose that it acts at a distance d from the left-hand end.

Then we require the moment of this force about the left-hand end (say) to equal the net moment of the two forces.

So $-20 d=10(1)-30(0.5)=-5 \Rightarrow d=0.25$
(Note: the single force could not act beyond the left-hand end, as that would give rise to a positive moment, which could not be equated to -5)

