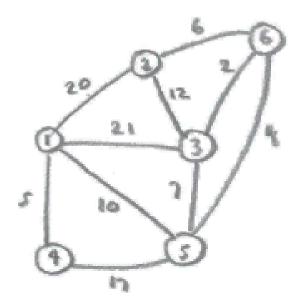

Floyd's Algorithm Overview (18/6/21)

Q1 [10 marks]

(i) Floyd's algorithm is to be used to find the shortest distances between the vertices of the following network. The results of the 1^{st} iteration are shown in the following tables. Carry out the 2^{nd} iteration of the algorithm (with routes going via B), producing distance and route tables. [8 marks]

1st Iteration - Distance table

	А	В	С	D	E	F	G	Н	I	J
А	_	5	∞	∞	9	10	12	∞	∞	∞
В	5	1	7	8	3	15	17	8	8	8
С	00	7	1	4	8	8	8	8	8	8
D	∞	8	4	-	6	8	8	8	8	7
E	9	3	8	6	1	19	21	8	3	8
F	10	15	8	8	19	1	3	5	2	8
G	12	17	8	8	21	3	1	5	8	8
Н	∞	8	8	8	8	5	5	1	3	8
I	∞	8	8	8	3	2	8	3	1	5
J	∞	∞	∞	7	∞	∞	∞	∞	5	_


1st Iteration - Route table

	А	В	С	D	E	F	G	Н	1	J
А	А	В	С	D	E	А	А	Н	I	J
В	Α	В	С	D	E	F	G	Н	1	J
С	А	В	С	D	E	F	G	Н	I	J
D	А	В	С	D	E	F	G	Н	I	J
E	А	В	С	D	E	А	А	Н	I	J
F	А	А	С	D	А	F	G	Н	I	J
G	Α	Α	С	D	Α	F	G	Ħ	I	J
Н	А	В	С	D	E	F	G	Н	1	J
I	А	В	С	D	E	F	G	Н	1	J
J	Α	В	С	D	E	F	G	H	1	J

(ii) Indicate the provisional route from F to D, after the 2^{nd} iteration [2 marks]

Q2 [Practice/E]

Use Floyd's algorithm to find distance and route matrices for the following network.

