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Eigenvectors and Invariance (6 pages; 16/4/20) 

See also: 

"Invariant Points and Lines - Introduction" 

"Invariant Points and Lines - Conditions" 

 

(1) For a given transformation, one of the following will apply:  

(a) Single invariant point 

- this is the situation where none of the eigenvalues equals 1 

(including cases where there are no eigenvalues) 

- the Origin will be the only invariant point  

(b) Line of invariant points  

- this situation corresponds to an eigenvalue of 1 

- such lines will always pass through the Origin   

 

(2) Also, one or more of the following may apply as well: 

(c) Invariant line passing through the Origin 

- points on one of these lines transform to other points (or the 

same point) on the line 

- each such line corresponds to a particular eigenvalue  

- a line of invariant points is a special case of an invariant line 

passing through the Origin, where the eigenvalue is 1 

(d) Invariant lines NOT passing through the Origin 

- these are not associated with eigenvectors (since the latter pass 

through the Origin) 
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(3) Equivalence of ordinary procedure for finding lines of 

invariant points & finding eigenvectors when 𝜆 = 1 

Example: 

(
2 4
3 13

) (
𝑝
𝑞) = (

𝑝
𝑞) ⇒ (

2 4
3 13

) (
𝑝
𝑞) = (

1 0
0 1

) (
𝑝
𝑞)  

 ⇒ [(
2 4
3 13

) − (
1 0
0 1

)] (
𝑝
𝑞) = (

0
0

)  

 ⇒ (
1 4
3 12

) (
𝑝
𝑞) = (

0
0

)   

⇒ 𝑝 + 4𝑞 = 0  

⇒ 𝑞 = −
𝑝

4
  

This is a line of invariant points through the Origin. It can be 

represented by the eigenvector (
4

−1
), corresponding to an 

eigenvalue of 1.  

Every point on the line 𝑦 = −
𝑥

4
  is transformed to itself under the 

transformation (
2 4
3 13

). 

Also, every point on this line is transformed to the point (
0
0

) 

under the transformation (
1 4
3 12

)  (which has a zero 

determinant). 
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(4) Invariant lines passing through the Origin 

For the transformation (
0 −1

−1 0
), representing a reflection in 

the line 𝑦 = −𝑥, we can apply the usual method of finding 

eigenvalues and then eigenvectors: 

Let  (
0 −1

−1 0
) (

𝑥
𝑦) = 𝜆 (

𝑥
𝑦) 

Then (
0 − 𝜆 −1

−1 0 − 𝜆
) (

𝑥
𝑦) = (

0
0

)   (A) 

and we require |
0 − 𝜆 −1

−1 0 − 𝜆
| = 0, in order for (A) to have a 

solution in addition to (
0
0

) 

So the characteristic equation is (0 − 𝜆)(0 − 𝜆) − (−1)(−1) = 0, 

giving 𝜆2 = 1,  and hence 𝜆 = ±1 

𝜆 = 1 ⇒ (
0 − 1 −1

−1 0 − 1
) (

𝑥
𝑦) = (

0
0

) , 

so that 𝑦 = −𝑥 (or eigenvector of  (
1

−1
)) 

whilst 𝜆 = −1 ⇒ (
0 + 1 −1

−1 0 + 1
) (

𝑥
𝑦) = (

0
0

) , 

so that 𝑦 = 𝑥  (or eigenvector of  (
1
1

)). 

 

The line 𝑦 = −𝑥 is the line of invariant points (being the mirror 

line of the transformation). 
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(5) Lines of invariant points will always pass through the Origin: 

Lines of invariant points satisfy   𝑀 (
𝑥
𝑦) = (

𝑥
𝑦), and we know that, 

if such a line exists (when there is an eigenvalue of 1), then there 

will be an eigenvector representing that line. And since all 

eigenvectors correspond to lines through the Origin*, our line of 

invariant points will pass through the Origin. 

[* Eigenvectors for 2 × 2 matrices, for example, are derived from 

an equation of the form  𝑎𝑥 + 𝑏𝑦 = 0, for which the solution is of 

the form  𝑦 = 𝑚𝑥.  For 3 × 3 matrices, the equations to be solved 

are of the form  𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 = 0  and 𝑑𝑥 + 𝑒𝑦 + 𝑓𝑧 = 0, and the 

line of intersection of these planes passes through the Origin, 

since both planes contain the Origin.] 

[See also "Invariant Points & Lines - Conditions" for an alternative 

proof.] 

 

(6) Invariant planes for 3 × 3 transformations (and 

diagonalisability) 

Having found the eigenvalues associated with a transformation, 

an invariant plane arises when the 3 simultaneous equations used 

to find the eigenvectors reduce to a single equation (typically in 

𝑥, 𝑦 & 𝑧); ie the equation of a plane. We can then choose any two 

non-parallel vectors in this plane as eigenvectors to cover the 

invariant plane. 

In order for there to be an invariant plane, it can be shown that 

there must be repeated eigenvalues. But if there are repeated 

eigenvalues it doesn't follow that there will be an invariant plane 

(ie the repeated eigenvalue can just lead to an ordinary 

eigenvector - in other words, an invariant line). 
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The theory behind this is based on the following theorem: "The 

geometric multiplicity of an eigenvalue does not exceed its 

algebraic multiplicity." The algebraic multiplicity is the number of 

times that the eigenvalue appears as a root of the characteristic 

equation. The geometric multiplicity is the dimension of the line 

or plane relating to the eigenvalue: so an invariant line means a 

geometric multiplicity of 1, whilst an invariant plane means a 

geometric multiplicity of 2.  

As an example of a situation where an eigenvalue is repeated but 

there is an invariant line, rather than an invariant plane, consider 

(
3 −1 1
7 −5 1
6 −6 2

) , which has eigenvalues 2, 2 and −4.  

The eigenvector associated with 2 turns out to be the line 𝑦 = 𝑥 in 

the 𝑥-𝑦 plane (ie 𝑧 = 0). 

For this example, there are only 2 linearly independent 

eigenvectors, and so the matrix can't be diagonalised. 

To reiterate: it isn't essential for the eigenvalues to be distinct, in 

order for the matrix to be diagonalisable. If two of the eigenvalues 

(for a 3 × 3 matrix) are the same, then the matrix will be 

diagonalisable if there is an invariant plane corresponding to the 

repeated eigenvalue. There will then be 2 eigenvectors covering 

the plane, and 3 (linearly independent) eigenvectors in total. 

In general, A is not diagonalisable if, for some eigenvalue, the 

algebraic multiplicity (the number of equal eigenvalues) is 

greater than the geometric multiplicity (1 for an invariant line, 2 

for an invariant plane etc). 

Each eigenvalue has an 'eigenspace' associated with it; being the 

vector space covered by the eigenvectors associated with that 

eigenvalue. Thus, if a particular eigenvalue appears 𝑘 times (ie the 
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algebraic multiplicity is 𝑘), then the dimension of the eigenspace 

(which is the geometric multiplicity) will be ≤ 𝑘. A matrix of 

order 𝑛 × 𝑛 is diagonalisable if and only if the sum of the 

dimensions of its eigenspaces equals 𝑛. 


