Correlation Q2 [Problem/H](8/6/21)

Show that the formula $r=\frac{s_{x y}}{\sqrt{S_{x x} S_{y y}}}$ can be written as $r_{s}=1-\frac{6 \sum d_{i}{ }^{2}}{n\left(n^{2}-1\right)}$ when the data items are ranks.
[In other words, instead of using the formula for Spearman's coefficient, it is theoretically possible to use the standard formula for r.]

Show that the formula $r=\frac{s_{x y}}{\sqrt{S_{x x} s_{y y}}}$ can be written as
$r_{s}=1-\frac{6 \sum d_{i}^{2}}{n\left(n^{2}-1\right)}$ when the data items are ranks.
[In other words, instead of using the formula for Spearman's coefficient, it is theoretically possible to use the standard formula for r.]

Solution

$S_{x x}=\sum x_{i}{ }^{2}-\frac{\left(\sum x_{i}\right)^{2}}{n}$
As the x_{i} are just the numbers 1 to n in some order,
$\sum x_{i}^{2}=\frac{n}{6}(n+1)(2 n+1)$ and $\sum x_{i}=\frac{n}{2}(n+1)$
and so $S_{x x}=\frac{n}{6}(n+1)(2 n+1)-\frac{n(n+1)^{2}}{4}$
By the same reasoning, $S_{y y}$ will also have this value,
so the denominator of r is
$\frac{n}{6}(n+1)(2 n+1)-\frac{n(n+1)^{2}}{4}=\frac{n}{12}(n+1)\{4 n+2-(3 n+3)\}$
$=\frac{n}{12}(n+1)(n-1)$
Then $S_{x y}=\sum x_{i} y_{i}-\frac{\left(\sum x_{i}\right)\left(\sum y_{i}\right)}{n}$
Now $\sum{d_{i}}^{2}=\sum\left(x_{i}-y_{i}\right)^{2}=\left(\sum x_{i}^{2}\right)+\left(\sum y_{i}^{2}\right)-2 \sum x_{i} y_{i}$,
so that $\sum x_{i} y_{i}=\frac{\left(\sum x_{i}{ }^{2}\right)+\left(\sum y_{i}{ }^{2}\right)-\sum d_{i}{ }^{2}}{2}$
$=\frac{1}{2}\left\{2 \cdot \frac{n}{6}(n+1)(2 n+1)-\sum d_{i}{ }^{2}\right\}$
Hence $S_{x y}=\frac{n}{6}(n+1)(2 n+1)-\frac{1}{2} \sum d_{i}{ }^{2}-\frac{\left(\frac{n}{2}(n+1)\right)^{2}}{n}$
$=\frac{n}{12}(n+1)\{4 n+2-(3 n+3)\}-\frac{1}{2} \sum d_{i}{ }^{2}$

$$
\begin{aligned}
& =\frac{n}{12}(n+1)(n-1)-\frac{1}{2} \sum d_{i}^{2} \\
& \text { and } r=\frac{\frac{n}{12}(n+1)(n-1)-\frac{1}{2} \sum d_{i}^{2}}{\frac{n}{12}(n+1)(n-1)}=1-\frac{6 \sum d_{i}^{2}}{n\left(n^{2}-1\right)}
\end{aligned}
$$

