Complex Numbers - Part 3 (12 pages; 1/5/25)

(20) De Moivre's Theorem

The theorem states that, if $z=cos\theta+isin\theta$, then $z^n=cos(n\theta)+isin(n\theta)$, where n can be fractional and/or negative

When n is a positive integer, this follows from the result established earlier that, where $z_1 = r_1(\cos\theta + i\sin\theta)$ and

$$z_2 = r_2(\cos\phi + i\sin\phi)$$
, then

$$z_1 z_2 = r_1 r_2 \{ cos(\theta + \phi) + isin(\theta + \phi) \}$$

Putting $z = z_1 = z_2$ gives $z^2 = cos(2\theta) + isin(2\theta)$, and this can be extended to higher integers by the same method.

Exercise: Express $(1-i)^6$ in the form x+iy

Solution

First of all, express z = 1 - i in modulus-argument form:

By considering the Argand diagram, $|z| = \sqrt{2}$ & arg $(z) = -\frac{\pi}{4}$

So
$$z = \sqrt{2}(\cos\left(-\frac{\pi}{4}\right) + i\sin\left(-\frac{\pi}{4}\right))$$

Then, by de Moivre's theorem,

$$z^{6} = \left(\sqrt{2}\right)^{6} \left(\cos\left(-\frac{6\pi}{4}\right) + i\sin\left(-\frac{6\pi}{4}\right)\right)$$

$$=8\left(\cos\left(-\frac{3\pi}{2}\right)+i\sin\left(-\frac{3\pi}{2}\right)\right)$$

$$=8\left(\cos\left(\frac{\pi}{2}\right)+i\sin\left(\frac{\pi}{2}\right)\right)=8i$$

When n is a negative integer:

Let
$$n = -k$$

Then
$$(\cos\theta + i\sin\theta)^n = \frac{1}{(\cos\theta + i\sin\theta)^k} = \frac{1}{\cos k\theta + i\sin k\theta}$$

= $\frac{1}{\cos k\theta + i\sin k\theta} \cdot \frac{\cos k\theta - i\sin k\theta}{\cos k\theta - i\sin k\theta} = \frac{\cos(-k\theta) + i\sin(-k\theta)}{\cos^2 k\theta + \sin^2 k\theta}$
= $\cos(n\theta) + i\sin(n\theta)$

Results following from de Moivre's theorem

(i)
$$(\cos\theta - i\sin\theta)^n = (\cos(-\theta) + i\sin(-\theta))^n$$

= $\cos(-n\theta) + i\sin(-n\theta) = \cos(n\theta) - i\sin(n\theta)$

(ii) If
$$z=cos\theta+isin\theta$$
, then $z^{-1}=cos(-\theta)+isin(-\theta)=cos\theta-isin\theta=z^*$ (but note that $z^{-1}=z^*$ only when $|z|=1$; $zz^*=|z|^2$ also gives this result)

(iii) For general
$$z = r(\cos\theta + i\sin\theta)$$
, $z^{-1} = \frac{1}{r}(\cos\theta - i\sin\theta)$
= $\frac{1}{r} \cdot \frac{z^*}{r} = \frac{z^*}{|z|^2}$

De Moivre's theorem can also be shown to be true for fractional n.

(21) Using de Moivre's Theorem to establish Trig. identities: Multiple angle formulae

Example: Show that
$$cos2\theta = cos^2\theta - sin^2\theta$$

 $cos2\theta = Re\{cos2\theta + isin2\theta\} = Re\{(cos\theta + isin\theta)^2\}$
 $= Re\{cos^2\theta + 2icos\thetasin\theta - sin^2\theta\}$

$$= cos^{2}\theta - sin^{2}\theta$$
(and similarly $sin2\theta = 2sin\theta cos\theta$)

Exercise: Find an expression for $sin3\theta$ in terms of powers of $sin\theta$ and/or $cos\theta$

Solution

$$sin3\theta = Im(cos3\theta + isin3\theta)$$

$$cos3\theta + isin3\theta = (cos\theta + isin\theta)^{3}$$

$$= cos^{3}\theta + 3cos^{2}\theta(isin\theta) + 3cos\theta(isin\theta)^{2} + (isin\theta)^{3}$$

$$Hence sin3\theta = 3cos^{2}\theta(sin\theta) - sin^{3}\theta$$

$$= 3(1 - sin^{2}\theta)(sin\theta) - sin^{3}\theta$$

$$= 3sin\theta - 4sin^{3}\theta$$

(22) Powers of Sines and Cosines

Powers of Cosines

To find $cos^2\theta$ in terms of $cos2\theta$:

Starting point:
$$cos\theta = \frac{1}{2}(z + z^{-1})$$
,

where
$$z = cos\theta + isin\theta$$
 and $z^{-1} = cos\theta - isin\theta$

Then
$$\cos^2\theta = \frac{1}{4}(z+z^{-1})^2 = \frac{1}{4}(z^2+2+z^{-2})$$

Now
$$z^2 + z^{-2} = (\cos 2\theta + i\sin 2\theta) + (\cos 2\theta - i\sin 2\theta) = 2\cos 2\theta$$

Hence
$$\cos^2 \theta = \frac{1}{4}(2 + 2\cos 2\theta) = \frac{1}{2}(1 + \cos 2\theta)$$

Exercise: Show that $cos^3\theta = \frac{1}{4}(cos3\theta + 3cos\theta)$

Solution

$$cos\theta = \frac{1}{2}(z + z^{-1})$$
where $z = cos\theta + isin\theta$ and $z^{-1} = cos\theta - isin\theta$
So $cos^3\theta = \frac{1}{8}(z + z^{-1})^3 = \frac{1}{8}(z^3 + 3z + 3z^{-1} + z^{-3})$

$$= \frac{1}{8}\{3(z + z^{-1}) + (z^3 + z^{-3})\}$$

$$= \frac{1}{8}\{3(2cos\theta) + (2cos3\theta)\}$$

$$= \frac{1}{4}(cos3\theta + 3cos\theta)$$

Powers of Sines

$$isin\theta=\frac{1}{2}(z-z^{-1}),$$
 where $z=cos\theta+isin\theta$ and $z^{-1}=cos\theta-isin\theta$ So $-isin^3\theta=\frac{1}{8}(z-z^{-1})^3$ (1)

Exercise: Find an expression for $sin^3\theta$

Solution

$$(1) \Rightarrow -8isin^{3}\theta = z^{3} - 3z + 3z^{-1} - z^{-3}$$

$$= z^{3} - z^{-3} - 3(z - z^{-1})$$

$$= 2isin(3\theta) - 3(2i)sin\theta$$
Hence $sin^{3}\theta = -\frac{1}{8}(2\sin(3\theta) - 6\sin\theta) = \frac{1}{4}(3\sin\theta - \sin(3\theta))$

(23) Exponential form of complex number

$$z = r(\cos\theta + i\sin\theta) = re^{i\theta}$$

Justification (assuming knowledge of Maclaurin expansions of e^x , $\cos x \& \sin x$):

$$e^{i\theta} = 1 + (i\theta) + \frac{(i\theta)^2}{2!} + \frac{(i\theta)^3}{3!} + \frac{(i\theta)^4}{4!} + \frac{(i\theta)^5}{5!} + \cdots$$

$$= 1 + i\theta - \frac{\theta^2}{2!} - \frac{i\theta^3}{3!} + \frac{\theta^4}{4!} + \frac{i\theta^5}{5!} \dots$$

$$= \left(1 - \frac{\theta^2}{2!} + \frac{\theta^4}{4!} + \cdots\right) + i(\theta - \frac{\theta^3}{3!} + \frac{\theta^5}{5!} - \cdots)$$

$$= \cos\theta + i\sin\theta$$

De Moivre's theorem is then simply: $(e^{i\theta})^n = e^{i(n\theta)}$, as we would expect.

(24) Roots of Complex Numbers

Consider the equation $z^3 = \cos\theta + i\sin\theta$

Then
$$z = cos\left(\frac{\theta}{3}\right) + isin\left(\frac{\theta}{3}\right)$$
 is a solution

But
$$cos\left(\frac{\theta}{3} + \frac{2\pi}{3}\right) + isin\left(\frac{\theta}{3} + \frac{2\pi}{3}\right)$$
 is a solution as well

and so is
$$\cos\left(\frac{\theta}{3} + 2\left(\frac{2\pi}{3}\right)\right) + i\sin\left(\frac{\theta}{3} + 2\left(\frac{2\pi}{3}\right)\right)$$

These are the solutions of $z = (\cos\theta + i\sin\theta)^{1/3}$

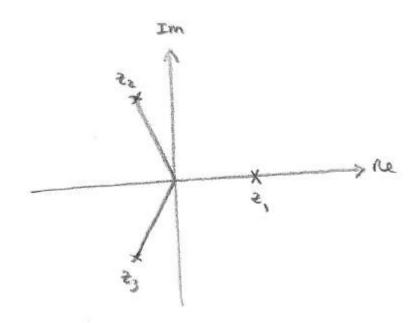
Exercise: When $\theta = 0$, express these 3 solutions in the form a + bi, and show them on the Argand diagram.

Solution

$$z_1 = \cos\left(\frac{0}{3}\right) + i\sin\left(\frac{0}{3}\right) = 1$$

$$z_2 = \cos\left(\frac{0}{3} + \frac{2\pi}{3}\right) + i\sin\left(\frac{0}{3} + \frac{2\pi}{3}\right) = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$$

$$z_3 = cos\left(\frac{0}{3} + 2\left(\frac{2\pi}{3}\right)\right) + isin\left(\frac{0}{3} + 2\left(\frac{2\pi}{3}\right)\right) = -\frac{1}{2} - i\frac{\sqrt{3}}{2}$$



So there are 3 solutions of $z^3 = cos\theta + isin\theta$, spread evenly on a unit circle in the Argand diagram, starting at $\frac{\theta}{3}$. These are the 3 cube roots of $cos\theta + isin\theta$.

More generally, there will be n roots of the equation

$$z^n = r(\cos\theta + i\sin\theta);$$

namely
$$z = r^{\frac{1}{n}} \left(\cos\left(\frac{\theta}{n} + \frac{2k\pi}{n}\right) + i\sin\left(\frac{\theta}{n} + \frac{2k\pi}{n}\right)\right)$$

for
$$k = 0, 1, ..., n - 1$$

Note that $\frac{\theta}{n} + \frac{2n\pi}{n} = \frac{\theta}{n} + 2\pi$, and so the root associated with k = n is identical to that associated with k = 0

(25) When r is a non-negative real number, \sqrt{r} is defined to be the positive square root (so that the solutions of $x^2 = r$ are $x = \pm \sqrt{r}$).

Because complex numbers are represented by points in the Argand diagram (in contrast to real numbers, which are represented by points on a number line), multiplication by -1 has a more complicated interpretation; namely as a rotation of 180° .

The square root of the complex number $z=re^{i\theta}$

 $(r \ge 0 \& -\pi < \theta \le \pi)$ is defined as $\sqrt{z} = \sqrt{r}e^{i\theta/2}$, and the solutions of $u^2 = z$ are $u = \pm \sqrt{r}e^{i\theta/2}$.

However, the complex square root function is not continuous, as when $z=e^{i\pi}$, $\sqrt{z}=e^{i\pi/2}=i$, whilst for the neighbouring point in the Argand diagram, $z=e^{-i(\pi-\delta)}$, $\sqrt{z}=e^{-i(\pi-\delta)/2}$, which is close to $e^{-i\pi/2}=-i$. It can be shown that, for this reason, it is not generally true that $\sqrt{uv}\neq \sqrt{u}\sqrt{v}$. For example, $\sqrt{-1}\sqrt{-1}=i^2=-1$, but $\sqrt{(-1)(-1)}=\sqrt{1}=1$.

(26) Relation between the roots of unity

Example: The 5 roots of $z^5 = 1$ (the "roots of unity") are $cos\theta + isin\theta$, where $\theta = \frac{2k\pi}{5}$, for k = 0,1,...,4

The 1st root after 1 is commonly denoted by ω ,

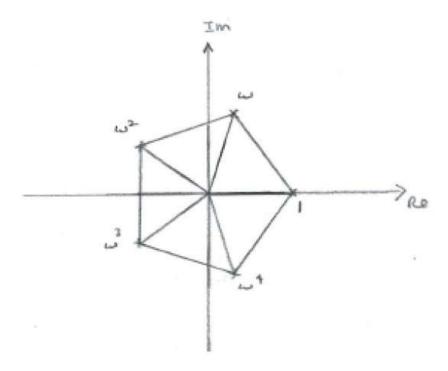
so that
$$\omega = \cos\left(\frac{2\pi}{5}\right) + i\sin\left(\frac{2\pi}{5}\right)$$

Then $\omega^2 = \cos\left(\frac{4\pi}{5}\right) + i\sin\left(\frac{4\pi}{5}\right)$, by de Moivre's theorem.

In general,
$$\omega^k = \cos\left(\frac{2k\pi}{5}\right) + i\sin\left(\frac{2k\pi}{5}\right)$$
,

and we can see that the 5 roots are: $1, \omega, \omega^2, \omega^3 \& \omega^4$

These form the vertices of a polygon, as in the diagram below.



The following result will now be proved:

$$1 + \omega + \omega^2 + \omega^3 + \omega^4 = 0$$

Approach 1 (Polynomial roots & coefficients)

The polynomial equation being solved is $z^5 - 1 = 0$, and the sum of the roots is $' - \frac{b'}{a} = 0$

Approach 2 (algebraic)

This is a geometric series with common ratio ω , and so

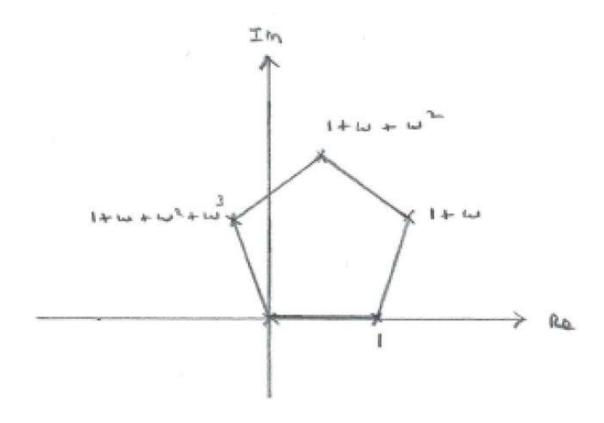
$$LHS = \frac{\omega^5 - 1}{\omega - 1} = \frac{0}{\omega - 1} \text{ (as } \omega^5 = 1) = 0 \text{ (as } \omega \neq 1)$$

Approach 3 (vectorial)

Treating complex numbers as vectors, $1 + \omega$ can be created as a vertex of the (new) polygon shown below. This then leads to $1 + \omega + \omega^2$, and so on.

The 5 sides of the polygon are $1, \omega, \omega^2, \omega^3 \& \omega^4$, in their vector form (each side has length 1, and the directions they make with the positive real axis are $0, \frac{2\pi}{5}, 2\left(\frac{2\pi}{5}\right), 3\left(\frac{2\pi}{5}\right), \dots$)

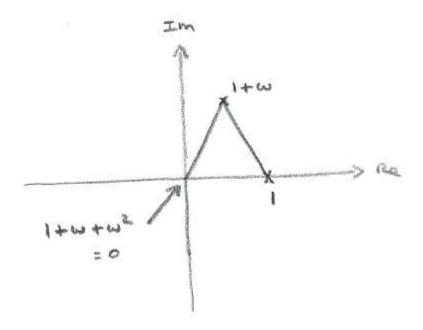
[Note that 1, ω , ω^2 , ω^3 & ω^4 were the **vertices** of the 1st polygon.]



From the diagram we see that the vector $1+\omega+\omega^2+\omega^3+\omega^4$ is at the Origin; ie $1+\omega+\omega^2+\omega^3+\omega^4=0$

Exercise: If $1, \omega, \omega^2$ are the cube roots of 1, draw the polygon with vertices $1, 1 + \omega, 1 + \omega + \omega^2$

Solution



(27) Transformations from z-plane to w-plane

(i) Concerned with effect on loci in the *z*-plane.

(ii)
$$w = z + a + bi$$
: translation

(iii) w = kz: enlargement of scale factor k(>0) (centre the Origin)

(iv) Example (from Edx FP2, Ex 3H, Q4 - p59)

$$w = 2z - 5 + 3i$$
; effect on the locus $|z - 2| = 4$?

$$(|z-2| = 4 \text{ can be written } (x-2)^2 + y^2 = 16)$$

Approach 1: enlargement of scale factor 2, followed by translation $-5 + 3i \Rightarrow$ centre of circle changes to 4, and then to 4 - 5 + 3i = -1 + 3i; radius changes to 8 (translation has no effect)

Approach 2:
$$w = 2z - 5 + 3i \Rightarrow z = \frac{1}{2}(w + 5 - 3i)$$

Then
$$|z - 2| = 4 \rightarrow \left| \frac{1}{2} (w + 5 - 3i) - 2 \right| = 4$$

 $\Rightarrow |w + 1 - 3i| = 8 \text{ [or } (u + 1)^2 + (v - 3)^2 = 64 \text{]}$

(v) Example (from Edx FP2, Ex 3H, Q5(b))

$$w = z - 1 + 2i$$
; effect on locus $arg(z - 1 + i) = \frac{\pi}{4}$?

Approach 1: All points on the half line are translated by -1 + 2i, with the direction of the line unchanged.

Approach 2:
$$w = z - 1 + 2i \implies z = w + 1 - 2i$$

Then
$$\arg(z - 1 + i) = \frac{\pi}{4} \Rightarrow \arg(w + 1 - 2i - 1 + i) = \frac{\pi}{4}$$

$$\Rightarrow \arg(w-i) = \frac{\pi}{4}$$

(vi) Example (from Edx FP2, Ex 3H, Q5(c))

$$w = z - 1 + 2i$$
; effect on locus $y = 2x$

Approach 1: as above

Approach 2: Consider separately z = 0, $argz = tan^{-1}2$ &

$$argz = (tan^{-1}2) - \pi$$
; then replace z with $w + 1 - 2i$, as in (5).

(When
$$z = 0$$
, $w = 0 - 1 + 2i$)

Equation of line in *w*-plane is $\frac{y-2}{x-(-1)} = 2$, as line passes through -1 + 2i, with the same gradient as before.

(vii) Example (from Edx FP2, Ex 3H, Q6(a))

$$w = \frac{1}{z}$$
; effect on locus $|z| = 2$?

$$w = \frac{1}{z} \Rightarrow z = \frac{1}{w}$$
; then $|z| = 2 \Rightarrow \left| \frac{1}{w} \right| = 2 \Rightarrow |w| = \frac{1}{2}$

(viii) Example (from Edx FP2, Ex 3H, Q7(a))

 $w=z^2$; show that going once round the circle $|z|=3 \rightarrow$ going twice round the circle |w|=9

$$z = 3e^{\theta i} \ (0 \le \theta < 2\pi) \to w = 9e^{2\theta i} \ (0 \le 2\theta < 4\pi)$$

(ix) Example (from Edx FP2, Ex 3H, Q12(a))

$$w = \frac{-iz+i}{z+1}$$
; effect on $|z| = 1$?

$$w = \frac{-iz+i}{z+1} \Rightarrow (z+1)w = -iz+i \Rightarrow z(w+i) = i-w$$

$$\Rightarrow z = \frac{i - w}{w + i}$$

Then $|z| = 1 \Rightarrow |i - w| = |w + i|$; ie |w - i| = |w + i|