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Complex Numbers - Exercises (45 pages; 22/3/25)  

 

Represent the following on the Argand diagram: 

(i)  |𝑧 − 𝑖| > |𝑧 + 1|    

(ii)  |𝑧 − 𝑖| = 2|𝑧 + 1|     
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[Represent the following on the Argand diagram: 

(i)  |𝑧 − 𝑖| > |𝑧 + 1|    

(ii)  |𝑧 − 𝑖| = 2|𝑧 + 1|    ] 

Solution 

(i) Method 1 

Rewriting as |𝑧 − 𝑖| > |𝑧 − (−1)| , 

𝑧 has to be further from 𝑖 than from −1; 

When 𝑧 is equidistant from these two points, it lies on the 

perpendicular bisector of the line (segment) connecting the 

points. So the required region is as shown below. 

 

 

 

Method 2 

 Let  𝑧 = 𝑥 + 𝑦𝑖 

Then |𝑧 − 𝑖| > |𝑧 + 1|  

⇒ |𝑥 + (𝑦 − 1)𝑖|2 > |(𝑥 + 1) + 𝑦𝑖|2     

⇒ 𝑥2 + (𝑦 − 1)2 > (𝑥 + 1)2 + 𝑦2      
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⇒ −2𝑦 > 2𝑥  

⇒ 𝑦 < −𝑥    

 

(ii) Let  𝑧 = 𝑥 + 𝑦𝑖 

Then   |𝑧 − 𝑖| = 2|𝑧 + 1| 

 ⇒ |𝑥 + (𝑦 − 1)𝑖|2 = 4|(𝑥 + 1) + 𝑦𝑖|2     

⇒ 𝑥2 + (𝑦 − 1)2 = 4{(𝑥 + 1)2 + 𝑦2 }     

⇒ 3𝑥2 + 8𝑥 + 3𝑦2 + 2𝑦 + 3 = 0  

⇒ 𝑥2 +
8𝑥

3
+ 𝑦2 +

2𝑦

3
+ 1 = 0  

⇒ (𝑥 +
4

3
)2 + (𝑦 +

1

3
)2 −

16

9
−

1

9
+ 1 = 0  

⇒ (𝑥 +
4

3
)2 + (𝑦 +

1

3
)2 =

8

9
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1 + 3𝑖  is a root of the equation  𝑧3 + 𝑝𝑧 + 𝑞 = 0 (where p & q are 

real). Find the other roots, and the values of p & q.  
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[1 + 3𝑖  is a root of the equation  𝑧3 + 𝑝𝑧 + 𝑞 = 0 (where p & q 

are real). Find the other roots, and the values of p & q.] 

Solution 

As the coefficients of the equation are real, the conjugate of 

1 + 3𝑖: 1 − 3𝑖 will also be a root.  

Then the equation can be written as 

(𝑧 − [1 + 3𝑖])(𝑧 − [1 − 3𝑖])(𝑧 − 𝛼) = 0  , where 𝛼 is the 3rd root. 

Expanding this gives (𝑧2 − 2𝑧 + 10)(𝑧 − 𝛼) = 0   

and hence   𝑧3 − (2 + 𝛼)𝑧2 + (10 + 2𝛼)𝑧 − 10𝛼 = 0  

Comparing the coefficients with those of 𝑧3 + 𝑝𝑧 + 𝑞 = 0, 

we see that 𝛼 = −2, so that   𝑝 = 6  and 𝑞 = 20  
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Alternative method 

Using the standard results that the roots 𝛼, 𝛽 & 𝛾 of the equation 

𝑎𝑧3 + 𝑏𝑧2 + 𝑐𝑧 + 𝑑 = 0  satisfy  𝛼 + 𝛽 + 𝛾 = −
𝑏

𝑎
 , 𝛼𝛽 + 𝛼𝛾 +

𝛽𝛾 =
𝑐

𝑎
 and 𝛼𝛽𝛾 = −

𝑑

𝑎
       (*): 

(1 + 3𝑖) + (1 − 3𝑖) + 𝛼 = 0  [since 𝑏 = 0] 

Hence 𝛼 = −2 

Also   (1 + 3𝑖)(1 − 3𝑖) − 2(1 + 3𝑖) − 2(1 − 3𝑖) = 𝑝, 

so that  10 − 2 − 2 = 𝑝  and  𝑝 = 6 

And   −2(1 + 3𝑖)(1 − 3𝑖) = −𝑞, 

so that 𝑞 = 2(10) = 20 

 

Notes 

(a) A cubic function  𝑦 = 𝑓(𝑥)  with real coefficients will cross the 

𝑥-axis at least once, and so 𝑓(𝑥) = 0  has at least one real root (𝛼, 

say). Then, factorising 𝑓(𝑥) as  (𝑥 − 𝛼)𝑔(𝑥)  means that, if 𝛽 is a 

complex root of 𝑓(𝑥) = 0, then 𝛽∗, the complex conjugate of 𝛽, 

must be the other root (considering the two roots derived from 

the quadratic formula). 

[This could also have been written as 𝑦 = 𝑓(𝑧)  etc] 

(b) (*) follows from expanding (𝑧 − 𝛼)(𝑧 − 𝛽)(𝑧 − 𝛾) = 0, and is 

in fact true whether the coefficients  a, b & c are real or complex. 
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Find the square roots of  3 − 4𝑖  
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[Find the square roots of  3 − 4𝑖] 

Solution 

We need to find z  such that 𝑧2 = 3 − 4𝑖 

Let  𝑧 = 𝑎 + 𝑏𝑖 

Then  𝑎2 − 𝑏2 + 2𝑎𝑏𝑖 = 3 − 4𝑖    

Equating real and imaginary parts,  𝑎2 − 𝑏2 = 3  and  2𝑎𝑏 = −4 

Hence  𝑏 = −
2

𝑎
  and  𝑎2 −

4

𝑎2 = 3,  so that  𝑎4 − 3𝑎2 − 4 = 0 

Then  (𝑎2 − 4)(𝑎2 + 1) = 0 

As  𝑎 is real, 𝑎 = ±2   and  𝑏 = ∓1    

Thus the square roots are  2 − 𝑖  and  −2 + 𝑖    or  ±(2 − 𝑖)  
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Find the solutions of  𝑧2 = 𝑖   
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[Find the solutions of  𝑧2 = 𝑖 ] 

Solution 

Method 1 

𝑧2 = 𝑖 = cos (
𝜋

2
) + 𝑖𝑠𝑖𝑛(

𝜋

2
)   

By De Moivre's theorem, 𝑧 = cos (
𝜋

4
) + 𝑖𝑠𝑖𝑛(

𝜋

4
) =

1

√2
(1 + 𝑖) 

or  𝑧 = cos (
𝜋

4
+

(−2𝜋)

2
) + 𝑖𝑠𝑖𝑛 (

𝜋

4
+

(−2𝜋)

2
)   

= cos (−
3𝜋

4
) + 𝑖𝑠𝑖𝑛(−

3𝜋

4
) = −

1

√2
(1 + 𝑖)   

[Note that  
𝜋

4
+

(−2𝜋)

2
 is chosen as the argument of the 2nd root, 

rather than 
𝜋

4
+

2𝜋

2
 , to avoid having to subtract 2𝜋 at the end.] 

Method 2  

Let  √𝑖 = 𝑎 + 𝑏𝑖 

Then  𝑖 = (𝑎 + 𝑏𝑖)2 = 𝑎2 − 𝑏2 + 2𝑎𝑏𝑖 

Equating real & imaginary parts, 

2𝑎𝑏 = 1  (1) &   𝑎2 − 𝑏2 = 0 (2) 

⇒ 𝑎2 − (
1

2𝑎
)

2
= 0  

⇒ (𝑎 −
1

2𝑎
) (𝑎 +

1

2𝑎
) = 0  

⇒ either  𝑎 =
1

2𝑎
⇒ 𝑎2 =

1

2
⇒ 𝑎 = ±

1

√2
  

or  𝑎 = −
1

2𝑎
⇒ 𝑎2 = −

1

2
  (not possible, as 𝑎 is real) 

Then  𝑎 = +
1

√2
⇒ 𝑏 =

1

2𝑎
=

√2

2
=

1

√2
  , from (1) 
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and 𝑎 = −
1

√2
⇒ 𝑏 = −

1

√2
 

Thus  √𝑖 = ±
1

√2
(1 + 𝑖)   

(This can be checked by squaring the RHS.) 
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Find (1 + 𝑖)10 
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[Find (1 + 𝑖)10] 

Solution 

arg(1 + 𝑖) =
𝜋

4
  &  |1 + 𝑖| = √2   

So (1 + 𝑖)2 = 2𝑒
2(

𝜋

4
)𝑖

= 2𝑒
𝜋𝑖

2 = 2𝑖   

Then multiplication by (1 + 𝑖)8 results in a magnification of 

(√2)
8

= 16  and rotation of  8 (
𝜋

4
) = 2𝜋; ie no change   

So  (1 + 𝑖)10 = (2𝑖)(16) = 32𝑖   

[Or  (1 + 𝑖)10 = (√2𝑒
𝜋𝑖

4 )
10

= 32𝑒
10𝜋𝑖

4 = 32𝑒
5𝜋𝑖

2 = 32𝑒
𝜋𝑖

2 = 32𝑖] 
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Find the equation of the line satisfying 

|𝑧 + 10| = |𝑧 − 6 − 4𝑖√2|   
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[Find the equation of the line satisfying 

|𝑧 + 10| = |𝑧 − 6 − 4𝑖√2|  ] 

Solution 

Writing 𝑧 = 𝑥 + 𝑦𝑖, 

|𝑧 + 10| = |𝑧 − 6 − 4𝑖√2| ⇒ |𝑥 + 10 + 𝑦𝑖| = |𝑥 − 6 + (𝑦 − 4√2)𝑖| 

Squaring both sides, (𝑥 + 10)2 + 𝑦2 = (𝑥 − 6)2 + (𝑦 − 4√2)2  

⇒ 20𝑥 + 100 = −12𝑥 + 36 − 8√2𝑦 + 32  

⇒ 8√2𝑦 = −32𝑥 − 32  

⇒ 𝑦 = −2√2𝑥 − 2√2    
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Express  (1 − 𝑖)6  in the form  𝑥 + 𝑖𝑦   
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[Express  (1 − 𝑖)6  in the form  𝑥 + 𝑖𝑦  ] 

Solution 

First of all, express 𝑧 = 1 − 𝑖  in modulus-argument form: 

By considering the Argand diagram, |𝑧| = √2  & arg (𝑧) = −
𝜋

4
 

So 𝑧 = √2(cos (−
𝜋

4
) + 𝑖𝑠𝑖𝑛 (−

𝜋

4
)) 

Then, by de Moivre's theorem, 

 𝑧6 = (√2)
6

(cos (−
6𝜋

4
) + 𝑖𝑠𝑖𝑛(−

6𝜋

4
))    

= 8 (cos (−
3𝜋

2
) + 𝑖𝑠𝑖𝑛 (−

3𝜋

2
))  

= 8 (cos (
𝜋

2
) + 𝑖𝑠𝑖𝑛 (

𝜋

2
)) = 8𝑖   
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Find the cube roots of −8 in cartesian form  
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[Find the cube roots of −8 in cartesian form] 

Solution 

𝑧3 = 8(𝑐𝑜𝑠𝜋 + 𝑖𝑠𝑖𝑛𝜋)  

𝑧1 = 2(cos (
𝜋

3
) + 𝑖𝑠𝑖𝑛 (

𝜋

3
))   

𝑧2 = 2 (cos (
𝜋

3
+

2𝜋

3
) + 𝑖𝑠𝑖𝑛 (

𝜋

3
+

2𝜋

3
)) = 2(cos 𝜋 + 𝑖 sin 𝜋)  

𝑧3 = 2(cos (
𝜋

3
+

4𝜋

3
) + 𝑖𝑠𝑖𝑛 (

𝜋

3
+

4𝜋

3
)) = 2(cos (

5𝜋

3
) + 𝑖𝑠𝑖𝑛 (

5𝜋

3
))  

 = 2(cos (−
𝜋

3
) + 𝑖𝑠𝑖𝑛 (−

𝜋

3
))   

ie 𝑧1 = 2 (
1

2
+

√3

2
𝑖) = 1 + √3 𝑖   

𝑧2 = −2  

𝑧3 = 2 (
1

2
−

√3

2
𝑖) = 1 − √3 𝑖   [𝑧3 + 8 = 0 ⇒ 𝑧1

∗ is root]  
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For each of the following numbers, say whether they are 

imaginary or complex (or both): 

(i) 1  (ii) 𝑖  (iii) 0  (iv) 1 + 𝑖 
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[For each of the following numbers, say whether they are 

imaginary or complex (or both): 

(i) 1  (ii) 𝑖  (iii) 0  (iv) 1 + 𝑖 ] 

Solution 

All four are complex (as they appear somewhere in the Argand 

diagram). Only the numbers 𝑖 and 0 are imaginary (as they 

appear on the imaginary axis). 

Imaginary numbers are sometimes referred to as "pure 

imaginary", to avoid confusion. 

[1 + 𝑖 can be described as "non-real complex", to distinguish it 

from "real and complex" numbers such as 1] 
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Are these statements true or false? (Give an explanation, or a 

counter example, as appropriate.) 

(i) All imaginary numbers are complex numbers. 

(ii) All complex numbers are imaginary numbers. 

(iii) All real numbers are complex numbers. 

(iv) Zero is an imaginary number. 

(v) The imaginary part of a complex number is an imaginary 

number. 

(vi) All complex numbers are either real numbers or imaginary 

numbers. 

(vii) Two imaginary numbers added together can sometimes give 

a real number. 

(viii) If two complex numbers multiply to give a real number, then 

they must be conjugates of each other. 

(ix) The square root of a non-real complex number is never real. 
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[Are these statements true or false? (Give an explanation, or a 

counter example, as appropriate.) 

(i) All imaginary numbers are complex numbers. 

(ii) All complex numbers are imaginary numbers. 

(iii) All real numbers are complex numbers. 

(iv) Zero is an imaginary number. 

(v) The imaginary part of a complex number is an imaginary 

number. 

(vi) All complex numbers are either real numbers or imaginary 

numbers. 

(vii) Two imaginary numbers added together can sometimes give 

a real number. 

(viii) If two complex numbers multiply to give a real number, then 

they must be conjugates of each other. 

(ix) The square root of a non-real complex number is never real.] 

Solution 

(i) True: An imaginary number is a number of the form 𝑏𝑖, where 

 𝑏 is real; a complex number is a number of the form 𝑎 + 𝑏𝑖, 

where  𝑎 & 𝑏 are real, and 𝑎 can equal zero. Note: "imaginary" 

numbers are often referred to as "pure imaginary" numbers, to 

avoid confusion. 

(ii) False: The complex number  𝑎 + 𝑏𝑖, where 𝑎 ≠ 0 is not 

imaginary, by the definition in (i). 

(iii) True: 𝑎 + 0𝑖  is complex. 

(iv) True: 0 = 0𝑖 is imaginary 

(v) False: The imaginary part of 𝑎 + 𝑏𝑖  is 𝑏  
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(vi) False: 2 + 3𝑖 is neither real nor imaginary. 

(vii) True: For example, 𝑖 & − 𝑖 

(viii) False: For example, 𝑖 & 𝑖 

(ix) True: Suppose that √𝑎 + 𝑏𝑖 = 𝑐, where 𝑎, 𝑏 ≠ 0  & 𝑐 are real; 

then 𝑎 + 𝑏𝑖 = 𝑐2, and equating imaginary parts ⇒ 𝑏 = 0, which is 

a contradiction 
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Find  (2 + 5𝑖) ÷ (1 + 3𝑖)  by (a) equating real and imaginary 

parts, and (b) another method. 
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[Find  (2 + 5𝑖) ÷ (1 + 3𝑖)  by (a) equating real and imaginary 

parts, and (b) another method] 

Solution 

(a) Let  (2 + 5𝑖) ÷ (1 + 3𝑖) = 𝑎 + 𝑏𝑖 

Then  2 + 5𝑖 = (𝑎 + 𝑏𝑖)(1 + 3𝑖) = 𝑎 + 3𝑎𝑖 + 𝑏𝑖 − 3𝑏  

Equating real parts:  2 = 𝑎 − 3𝑏   (1) 

Equating imaginary parts:  5 = 3𝑎 + 𝑏  (2) 

(1) + 3 × (2) ⇒ 17 = 10𝑎 ⇒ 𝑎 =
17

10
  

Then  (2) ⇒ 𝑏 = 5 −
51

10
= −

1

10
 

So (2 + 5𝑖) ÷ (1 + 3𝑖) =
17

10
−

𝑖

10
 

 

(b) 
2+5𝑖

1+3𝑖
=

(2+5𝑖)(1−3𝑖)

(1+3𝑖)(1−3𝑖)
=

2+15−6𝑖+5𝑖

1+9
 =

17

10
−

𝑖

10
   

Check:  
1

10
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Solve the equation   (2 + 𝑖)𝑧 + 3 = 0  by (a) equating real and 

imaginary parts, and (b) another method 
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[Solve the equation   (2 + 𝑖)𝑧 + 3 = 0  by (a) equating real and 

imaginary parts, and (b) another method] 

Solution 

(a) Let  𝑧 = 𝑎 + 𝑏𝑖 

Then  (2 + 𝑖)(𝑎 + 𝑏𝑖) + 3 = 0 

⇒ 2𝑎 − 𝑏 + (𝑎 + 2𝑏)𝑖 + 3 = 0  

Equating real parts:  2𝑎 − 𝑏 = −3   (1) 

Equating imaginary parts:  𝑎 + 2𝑏 = 0   (2) 

Substituting for a from (2) into (1),   2(−2𝑏) − 𝑏 = −3  and ∴ 𝑏 =
3

5
   and  𝑎 = −

6

5
 

so that  𝑧 = −
6

5
+

3𝑖

5
 

(b) (2 + 𝑖)𝑧 + 3 = 0 ⇒ 𝑧 =
−3

2+𝑖
=

−3(2−𝑖)

(2+𝑖)(2−𝑖)
=

−6+3𝑖

4+1
= −

6

5
+

3𝑖

5
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Solve the equation 𝑧2 − 2𝑧 + 2 = 0  
 
(a) by completing the square 
(b) by equating real & imaginary parts 
 
  



 fmng.uk 

30 
 

[Solve the equation 𝑧2 − 2𝑧 + 2 = 0  
 
(a) by completing the square 
(b) by equating real & imaginary parts] 
 
Solution 

(a) 𝑧2 − 2𝑧 + 2 = 0  

⇒ (𝑧 − 1)2 + 12 = 0  

⇒ ([𝑧 − 1] + 𝑖)([𝑧 − 1] − 𝑖) = 0  

⇒ 𝑧 = 1 − 𝑖  𝑜𝑟  1 + 𝑖  

 

(b) Let  𝑧 = 𝑎 + 𝑏𝑖 

Then  (𝑎 + 𝑏𝑖)2 − 2(𝑎 + 𝑏𝑖) + 2 = 0 

⇒ 𝑎2 − 𝑏2 + 2𝑎𝑏𝑖 − 2𝑎 − 2𝑏𝑖 + 2 = 0  

equating real parts:  𝑎2 − 𝑏2 − 2𝑎 + 2 = 0   (1) 

equating imaginary parts:  2𝑎𝑏 − 2𝑏 = 0   (2) 

(2) ⇒ 𝑏(𝑎 − 1) = 0 ⇒ 𝑏 = 0  𝑜𝑟  𝑎 = 1  

From (1), 𝑏 = 0 ⇒ 𝑎2 − 2𝑎 + 2 = 0  

(this can be excluded, as a  is real and there are no real solutions 

to the quadratic equation) 

𝑎 = 1 ⇒ 1 − 𝑏2 = 0 ⇒ 𝑏 = ±1  

Hence  𝑧 = 1 ± 𝑖 
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Find arg {−𝑠𝑖𝑛 (
𝜋

3
) + 𝑖𝑐𝑜𝑠 (

𝜋

3
)}  
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[Find arg {−𝑠𝑖𝑛 (
𝜋

3
) + 𝑖𝑐𝑜𝑠 (

𝜋

3
)} ] 

Solution 

Approach 1  

−𝑠𝑖𝑛 (
𝜋

3
) + 𝑖𝑐𝑜𝑠 (

𝜋

3
) = 𝑠𝑖𝑛 (−

𝜋

3
) + 𝑖𝑐𝑜𝑠 (−

𝜋

3
)  

[note that it helps to keep the angle the same in both terms] 

= 𝑐𝑜𝑠 (
𝜋

2
− [−

𝜋

3
]) + 𝑖𝑠𝑖𝑛 (

𝜋

2
− [−

𝜋

3
]) = cos (

5𝜋

6
) + 𝑖𝑠𝑖𝑛(

5𝜋

6
)  

So  arg {−𝑠𝑖𝑛 (
𝜋

3
) + 𝑖𝑐𝑜𝑠 (

𝜋

3
)} =

5𝜋

6
 

Approach 2 

−𝑠𝑖𝑛 (
𝜋

3
) + 𝑖𝑐𝑜𝑠 (

𝜋

3
) = − cos (

𝜋

2
−

𝜋

3
) + 𝑖𝑠𝑖𝑛 (

𝜋

2
−

𝜋

3
)  

= −𝑐𝑜𝑠 (
𝜋

6
) + 𝑖𝑠𝑖𝑛 (

𝜋

6
) = −{𝑐𝑜𝑠 (

𝜋

6
) − 𝑖𝑠𝑖𝑛 (

𝜋

6
)}  

Then  𝑎𝑟𝑔 {𝑐𝑜𝑠 (
𝜋

6
) − 𝑖𝑠𝑖𝑛 (

𝜋

6
)} = −

𝜋

6
   

[as  𝑐𝑜𝑠 (
𝜋

6
) − 𝑖𝑠𝑖𝑛 (

𝜋

6
) is the conjugate of  𝑐𝑜𝑠 (

𝜋

6
) + 𝑖𝑠𝑖𝑛 (

𝜋

6
); 

also 𝑐𝑜𝑠 (
𝜋

6
) − 𝑖𝑠𝑖𝑛 (

𝜋

6
) = 𝑐𝑜𝑠 (−

𝜋

6
) + 𝑖𝑠𝑖𝑛 (−

𝜋

6
)], 

and so  arg [− {𝑐𝑜𝑠 (
𝜋

6
) − 𝑖𝑠𝑖𝑛 (

𝜋

6
)}] = −

𝜋

6
+ 𝜋 =

5𝜋

6
 

[since multiplication by −1 is a rotation by 𝜋  in the Argand 

diagram] 

Approach 3 

arg {−𝑠𝑖𝑛 (
𝜋

3
) + 𝑖𝑐𝑜𝑠 (

𝜋

3
)} = arg {𝑖(𝑐𝑜𝑠 (

𝜋

3
) + 𝑖𝑠𝑖𝑛 (

𝜋

3
))}  

= 𝑎𝑟𝑔(𝑖) +
𝜋

3
=

𝜋

2
+

𝜋

3
=

5𝜋

6
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How are the complex numbers  𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃  and 

 𝑠𝑖𝑛𝜃 + 𝑖𝑐𝑜𝑠𝜃  related? 
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[How are the complex numbers  𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃  and 

 𝑠𝑖𝑛𝜃 + 𝑖𝑐𝑜𝑠𝜃  related?] 

Solution 

𝑠𝑖𝑛𝜃 + 𝑖𝑐𝑜𝑠𝜃 = cos (
𝜋

2
− 𝜃) + 𝑖𝑠𝑖𝑛(

𝜋

2
− 𝜃)   

As both complex numbers have a modulus of 1, 𝑠𝑖𝑛𝜃 + 𝑖𝑐𝑜𝑠𝜃  is 

the reflection of  𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃  in the line  Re = Im (see diagram 

below). 
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Given that 2 − 𝑖 is a root of the equation 

𝑧4 − 6𝑧3 − 2𝑧2 + 50𝑧 − 75 = 0, find the other roots. 
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[Given that 2 − 𝑖 is a root of the equation 

𝑧4 − 6𝑧3 − 2𝑧2 + 50𝑧 − 75 = 0, find the other roots.] 

Solution 

Method 1 

2 + 𝑖  is another root (the conjugate of 2 − 𝑖) 

Let the other two roots be 𝛼 & 𝛽. 

Then (2 − 𝑖) + (2 + 𝑖) + 𝛼 + 𝛽 = 6;  𝛼 + 𝛽 = 2  

And  (2 − 𝑖)(2 + 𝑖)𝛼𝛽 = −75;   5𝛼𝛽 = −75;  𝛼𝛽 = −15 

So the roots 𝛼 & 𝛽 satisfy 𝑥2 − 2𝑥 − 15 = 0 

⇒ (𝑥 − 5)(𝑥 + 3) = 0 ⇒ 𝑥 = 5 𝑜𝑟 − 3, and these are the 

remaining roots. 

Method 2 

2 + 𝑖  is another root (the conjugate of 2 − 𝑖) 

Write  𝑧4 − 6𝑧3 − 2𝑧2 + 50𝑧 − 75 

= (𝑧 − [2 − 𝑖])(𝑧 − [2 + 𝑖])( 𝑧2 + 𝑏𝑧 + 𝑐)  

= (𝑧2 − 4𝑧 + 5)( 𝑧2 + 𝑏𝑧 + 𝑐),  

as (2 − 𝑖) + (2 + 𝑖) = 4 and (2 − 𝑖)(2 + 𝑖) = 22 + 12 = 5 

Then, equating coefficients, 

𝑐 = −15   and  [𝑧3: ] − 6 = 𝑏 − 4, so that 𝑏 = −2  

[Check: [𝑧2: ] −2 = −15 − 4𝑏 + 5 ⇒ 𝑏 = −2] 

Thus 𝑧4 − 6𝑧3 − 2𝑧2 + 50𝑧 − 75 = (𝑧2 − 4𝑧 + 5)( 𝑧2 − 2𝑧 − 15)  

And 𝑧2 − 2𝑧 − 15 = 0 ⇒ (𝑧 − 5)(𝑧 + 3) = 0 ⇒ 𝑧 = 5 𝑜𝑟 − 3, and 

these are the remaining roots. 
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(i) Show geometrically that 

|𝑧1 + 𝑧2| ≤ |𝑧1| + |𝑧2|  

When is there equality? 

(ii) Show geometrically, and also from (i) that 

|𝑧1 − 𝑧2| ≥ |𝑧1| − |𝑧2|  

When is there equality? 
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[(i) Show geometrically that 

|𝑧1 + 𝑧2| ≤ |𝑧1| + |𝑧2|  

When is there equality? 

(ii) Show geometrically, and also from (i) that 

|𝑧1 − 𝑧2| ≥ |𝑧1| − |𝑧2|  

When is there equality?] 

Solution 

(i) 

 

Referring to the diagram, |𝑧1 + 𝑧2| is the length OC, whilst 

|𝑧1| and |𝑧2| are the lengths AC and OA. As 𝑂𝐶 ≤ 𝑂𝐴 + 𝐴𝐶, 

the required result follows.  

If 𝑧2 = 𝑘𝑧1 (so that 𝑧1 & 𝑧2 have the same argument), 

then |𝑧1 + 𝑧2| = |(1 + 𝑘)𝑧1| = (1 + 𝑘)|𝑧1| 

and |𝑧1| + |𝑧2| = |𝑧1| + 𝑘|𝑧1| = (1 + 𝑘)|𝑧1| 

So there is equality when 𝑧1 & 𝑧2 have the same argument. 
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[Strictly speaking, we should also show that |𝑧1 − 𝑧2| = |𝑧1| + |𝑧2| 

means that 𝑧2 = 𝑘𝑧1, and this can be seen geometrically, by 

requiring A to lie on OC.] 

 

(ii) Referring to the diagram again, |𝑧1 − 𝑧2| = |𝑧2 − 𝑧1| is the 

length BA. 

Result to prove: |𝑧1 − 𝑧2| ≥ |𝑧1| − |𝑧2| ;  ie 𝐵𝐴 ≥ 𝑂𝐵 − 𝑂𝐴, 

or 𝑂𝐵 ≤ 𝑂𝐴 + 𝐵𝐴, and this can be seen to be true from the 

diagram. 

Alternatively, from (i): |𝑧1 + 𝑧2| ≤ |𝑧1| + |𝑧2|  

or  |𝑧1| ≥ |𝑧1 + 𝑧2| − |𝑧2|  

So let  𝑧1 = 𝑢1 − 𝑢2 and 𝑧2 = 𝑢2. 

Then |𝑢1 − 𝑢2| ≥ |(𝑢1 − 𝑢2) + 𝑢2| − |𝑢2| 

ie  |𝑢1 − 𝑢2| ≥ |𝑢1| − |𝑢2|, 

which can be rewritten as |𝑧1 − 𝑧2| ≥ |𝑧1| − |𝑧2| , as required. 

 

Equality occurs when  |𝑧1 − 𝑧2| = |𝑧1| − |𝑧2| ; 

ie |𝑧1| = |𝑧2| + |𝑧1 − 𝑧2|, 

which is when |𝑧1| ≥ |𝑧2| and 𝑧1 = 𝑘𝑧2, so that 𝑘 ≥ 1. 
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Points representing the 3 roots of the equation 

𝑧3 + 𝑧2 − 7𝑧 − 15 = 0  are plotted on an Argand diagram.  

Given that one of the roots is an integer, find the area of the 

triangle that has these 3 points as its vertices. 
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[Points representing the 3 roots of the equation 

𝑧3 + 𝑧2 − 7𝑧 − 15 = 0  are plotted on an Argand diagram.  

Given that one of the roots is an integer, find the area of the 

triangle that has these 3 points as its vertices.] 

Solution 

Let 𝑓(𝑧) = 𝑧3 + 𝑧2 − 7𝑧 − 15 

If 𝑓(𝑧) is to factorise, then we need only consider factors of 15 

when applying the Factor theorem. 

𝑓(1) = 1 + 1 − 7 − 15 = −20  

𝑓(−1) = −1 + 1 + 7 − 15 = −8  

𝑓(3) = 27 + 9 − 21 − 15 = 0  

Thus 𝑧 − 3 is a factor, 

and we can write 𝑧3 + 𝑧2 − 7𝑧 − 15 = (𝑧 − 3)(𝑧2 + 4𝑧 + 5) 

The roots are therefore  3 & 
−4±√16−20

2
= −2 ± 𝑖 

The area of the triangle is thus  
1

2
(5)(2) = 5 sq. units. 
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Find the square roots of −5 − 12𝑖 
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[Find the square roots of −5 − 12𝑖] 

Solution 

Let (𝑎 + 𝑏𝑖)2 = −5 − 12𝑖 

Then, equating Re. & Im parts: 

𝑎2 − 𝑏2 = −5  &  2𝑎𝑏 = −12  

so that  𝑎2 − (
−12

2𝑎
)2 = −5   

⇒ 𝑎4 − 36 = −5𝑎2  

Writing 𝑐 = 𝑎2, 𝑐2 + 5𝑐 − 36 = 0 

⇒ (𝑐 + 9)(𝑐 − 4) = 0  

⇒ 𝑎2 = 4 (reject  𝑎2 = −9, as negative) 

⇒ 𝑎 = ±2  

𝑎 = 2 ⇒ 𝑏 =
−12

2𝑎
= −3  

and  𝑎 = −2 ⇒ 𝑏 = 3 

So the square roots are 2 − 3𝑖  and  −2 + 3𝑖   [ie ±(2 − 3𝑖  )] 
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Use complex numbers to show that 𝑠𝑖𝑛 (
5𝜋

12
) =

√2+√6

4
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[Use complex numbers to show that 𝑠𝑖𝑛 (
5𝜋

12
) =

√2+√6

4
] 

Solution 

5𝜋

12
=

𝜋

4
+

𝜋

6
  

Let 𝑧1 = cos (
𝜋

4
) + 𝑖𝑠𝑖𝑛(

𝜋

4
)  and 𝑧2 = cos (

𝜋

6
) + 𝑖𝑠𝑖𝑛(

𝜋

6
)   

Then arg(𝑧1𝑧2) = arg(𝑧1) + arg(𝑧2) =
𝜋

4
+

𝜋

6
=

5𝜋

12
 , 

 and hence 𝑠𝑖𝑛 (
5𝜋

12
) =

𝐼𝑚(𝑧1𝑧2)

|𝑧1𝑧2|
=

𝐼𝑚(𝑧1𝑧2)

|𝑧1||𝑧2|
= 𝐼𝑚(𝑧1𝑧2) 

Then, as 𝑧1 =
1

√2
+

1

√2
𝑖  and  𝑧2 =

√3

2
+

1

2
𝑖 , 

𝐼𝑚(𝑧1𝑧2) =
1

√2
 .

1

2
+

1

√2
 .

√3

2
=  

1+√3

2√2
=

√2+√6

4
  , as required. 


