Complex Numbers – Further Exercises

(10 pages; 22/3/25)

Consider two roots of $z^n = cos\theta + isin\theta$:

$$z_r = \cos\left(\frac{\theta}{n} + \frac{2\pi r}{n}\right) + isin\left(\frac{\theta}{n} + \frac{2\pi r}{n}\right)$$

and $z_R = \cos\left(\frac{\theta}{n} + \frac{2\pi R}{n}\right) + isin\left(\frac{\theta}{n} + \frac{2\pi R}{n}\right)$

(i) Find the condition on *n* for z_R to equal $-z_r$ for some *R*, and find *R* in terms of *r*.

(ii) Find the condition on θ for z_R to be the conjugate of z_r for some R, and find R in terms of r.

[Consider two roots of $z^n = cos\theta + isin\theta$:

$$z_r = \cos\left(\frac{\theta}{n} + \frac{2\pi r}{n}\right) + isin\left(\frac{\theta}{n} + \frac{2\pi r}{n}\right)$$

and $z_R = \cos\left(\frac{\theta}{n} + \frac{2\pi R}{n}\right) + isin\left(\frac{\theta}{n} + \frac{2\pi R}{n}\right)$

(i) Find the condition on *n* for z_R to equal $-z_r$ for some *R*, and find *R* in terms of *r*.

(ii) Find the condition on θ for z_R to be the conjugate of z_r for some R, and find R in terms of r.]

Solution

(i)
$$\frac{\theta}{n} + \frac{2\pi R}{n} = \frac{\theta}{n} + \frac{2\pi r}{n} \pm \pi$$

 $\Rightarrow 2R = 2r \pm n$
 $\Rightarrow R = r \pm \frac{n}{2}$

So *n* has to be even.

(ii)
$$\frac{\theta}{n} + \frac{2\pi R}{n} = -(\frac{\theta}{n} + \frac{2\pi r}{n})$$

 $\Rightarrow 2\pi R = -2\theta - 2\pi r$
 $\Rightarrow R = -\frac{\theta}{\pi} - r$

So θ has to be either 0 or π (ie $a = cos\theta + isin\theta$ has to be real, so that $z^n - a = 0$ has real coefficients)

If $\theta = 0$, then R = -r, and if $\theta = \pi$, then R = -1 - r

Example 1:
$$z^n = 1 = cos0$$
, $+isin0$

$$z_r = \cos\left(\frac{0}{n} + \frac{2\pi r}{n}\right) + isin\left(\frac{0}{n} + \frac{2\pi r}{n}\right)$$

And if $R = -r$, $z_R = \cos\left(\frac{0}{n} - \frac{2\pi r}{n}\right) + isin\left(\frac{0}{n} - \frac{2\pi r}{n}\right) = z_r^*$

Example 2: $z^n = -1 = cos\pi$, $+isin\pi$ $z_r = cos\left(\frac{\pi}{n} + \frac{2\pi r}{n}\right) + isin\left(\frac{\pi}{n} + \frac{2\pi r}{n}\right)$ And if R = -1 - r, $z_R = cos\left(\frac{\pi}{n} - \frac{2\pi}{n} - \frac{2\pi r}{n}\right) + isin\left(\frac{\pi}{n} - \frac{2\pi}{n} - \frac{2\pi r}{n}\right)$ $= cos\left(-\frac{\pi}{n} - \frac{2\pi r}{n}\right)$

Let $z = \frac{a+i}{1+ai}$. If $argz = -\frac{\pi}{4}$, find the possible values of a

[Let
$$z = \frac{a+i}{1+ai}$$
. If $argz = -\frac{\pi}{4}$, find the possible values of a]

Solution

z can be written as x - xi, where x > 0,

so that
$$(x - xi)(1 + ai) = a + i$$

and
$$x + xai - xi + xa = a + i$$

Then equating real and imaginary parts:

$$x + xa = a \& xa - x = 1;$$

ie $x(1 + a) = a \& x(a - 1) = 1,$
so that $x = \frac{a}{1+a} = \frac{1}{a-1}$
and $a^2 - a = 1 + a$
 $\Rightarrow a^2 - 2a - 1 = 0$
 $\Rightarrow a = \frac{2 \pm \sqrt{8}}{2} = 1 \pm \sqrt{2}$
Also $x > 0$:
 $a = 1 \pm \sqrt{2} \Rightarrow x = \frac{1}{a-1} = \frac{1}{\pm \sqrt{2}}$
so that $a = 1 + \sqrt{2}$

Find the modulus and argument of $e^{\frac{7\pi i}{10}} - e^{-\frac{9\pi i}{10}}$

[Find the modulus and argument of $e^{\frac{7\pi i}{10}} - e^{-\frac{9\pi i}{10}}$]

Solution

Method 1

Write $z = e^{\frac{7\pi i}{10}} - e^{-\frac{9\pi i}{10}}$ in the form $e^{a\pi i} (e^{b\pi i} - e^{-b\pi i})$ So $a + b = \frac{7}{10} \& a - b = -\frac{9}{10}$ Then $a = -\frac{1}{10} \& b = \frac{8}{10}$ and $e^{\frac{7\pi i}{10}} - e^{-\frac{9\pi i}{10}} = e^{-\frac{\pi i}{10}} (e^{\frac{8\pi i}{10}} - e^{-\frac{8\pi i}{10}})$ $= e^{-\frac{\pi i}{10}} (2isin(\frac{4\pi}{5}))$ Then $|z| = \left| e^{-\frac{\pi i}{10}} \right| \left| 2isin(\frac{4\pi}{5}) \right| = (1)(2sin(\frac{4\pi}{5}))$ $= 2sin(\pi - \frac{4\pi}{5}) = 2sin(\frac{\pi}{5})$ and $arg(z) = arg(e^{-\frac{\pi i}{10}}) + arg(2isin(\frac{4\pi}{5}))$ $= -\frac{\pi}{10} + \frac{\pi}{2} = \frac{4\pi}{10} = \frac{2\pi}{5}$

Method 2

$$e^{\frac{7\pi i}{10}} - e^{-\frac{9\pi i}{10}}$$

$$= \left(\cos\left(\frac{7\pi}{10}\right) - \cos\left(\frac{-9\pi}{10}\right)\right) + i\left(\sin\left(\frac{7\pi}{10}\right) - \sin\left(\frac{-9\pi}{10}\right)\right)$$

$$= -2\sin\left(\frac{1}{2}\left(\frac{7\pi}{10} + \frac{-9\pi}{10}\right)\right)\sin\left(\frac{1}{2}\left(\frac{7\pi}{10} - \frac{-9\pi}{10}\right)\right)$$

$$+ 2\cos\left(\frac{1}{2}\left(\frac{7\pi}{10} + \frac{-9\pi}{10}\right)\right)\sin\left(\frac{1}{2}\left(\frac{7\pi}{10} - \frac{-9\pi}{10}\right)\right)$$

$$= -2\sin\left(-\frac{\pi}{10}\right)\sin\left(\frac{8\pi}{10}\right) + 2i\cos\left(-\frac{\pi}{10}\right)\sin\left(\frac{8\pi}{10}\right)$$
$$= 2\sin\left(\frac{8\pi}{10}\right)\left\{\sin\left(\frac{\pi}{10}\right) + i\cos\left(\frac{\pi}{10}\right)\right\}$$
$$= 2\sin\left(\frac{4\pi}{5}\right)\left\{\cos\left(\frac{\pi}{2} - \frac{\pi}{10}\right) + i\sin\left(\frac{\pi}{2} - \frac{\pi}{10}\right)\right\}$$
$$= 2\sin\left(\frac{\pi}{5}\right)\left\{\cos\left(\frac{4\pi}{10}\right) + i\sin\left(\frac{4\pi}{10}\right)\right\}$$
$$= 2\sin\left(\frac{\pi}{5}\right)e^{\frac{2\pi i}{5}}$$
So mod is $2\sin\left(\frac{\pi}{5}\right)$ and arg is $\frac{2\pi}{5}$

Referring to the diagram, use complex numbers to prove that the diagonal OC of the rhombus OACB bisects the angle OAB.

[Referring to the diagram, use complex numbers to prove that the diagonal OC of the rhombus OACB bisects the angle OAB.]

Solution

Let *z* & *w* be the complex numbers represented by the points A & B. Write $z + w = re^{i\theta} + re^{i(\theta + \alpha)}$, where $\alpha = \angle AOB$

[aiming to show that $\arg(z + w)$ will be $\theta + \frac{\alpha}{2}$]

Then
$$z + w = re^{i\left(\theta + \frac{\alpha}{2}\right)} (e^{-i\frac{\alpha}{2}} + e^{i\frac{\alpha}{2}})$$

= $re^{i\left(\theta + \frac{\alpha}{2}\right)}$. $2\cos\left(\frac{\alpha}{2}\right)$,
and hence $\arg(z + w) = \theta + \frac{\alpha}{2} = \frac{1}{2}(\theta + [\theta + \alpha])$

$$=\frac{1}{2}(argz+argw)$$

Then, as C represents z + w, OC bisects the angle OAB.