Circular Motion – Q1 [Problem/M](2/6/21)

Find the height above the earth's surface of a satellite in geostationary orbit (above the equator), using the following data:

radius of earth = 6370 km mass of earth $\approx 6 \ge 10^{24}$ kg $G \approx 7 \ge 10^{-11}$ Gravitational force = $\frac{GMm}{r^2}$ Find the height above the earth's surface of a satellite in geostationary orbit (above the equator), using the following data:

radius of earth = 6370 km mass of earth $\approx 6 \ge 10^{24}$ kg $G \approx 7 \ge 10^{-11}$ Gravitational force = $\frac{GMm}{r^2}$

Solution

Steps:

(i) Set up F = ma

(ii) Establish ω

(iii) Solve for r

$$\frac{GMm}{r^2} = m\omega^2 r ,$$

where M is the mass of the Earth, m is the mass of the satellite, r is the distance of the satellite from the Earth's centre, and ω is its angular speed

 $\omega = \frac{2\pi}{24 \times 3600} \ rads^{-1}$ Hence $r^3 = \frac{GM}{\omega^2} \approx \frac{6.67 \times 10^{-11} \times 5.98 \times 10^{24} \times (24 \times 3600)^2}{(2\pi)^2} = 7.5421 \times 10^{22}$ and $r = 4.22504 \times 10^7 \ m$; ie 42250 km Thus, height above Earth's surface is $42250 - 6380 = 35900 \ km \ (2sf)$