Circular Motion - Q1 [Problem/M](2/6/21)

Find the height above the earth's surface of a satellite in geostationary orbit (above the equator), using the following data: radius of earth $=6370 \mathrm{~km}$
mass of earth $\approx 6 \times 10^{24} \mathrm{~kg}$
$G \approx 7 \times 10^{-11}$
Gravitational force $=\frac{G M m}{r^{2}}$

Find the height above the earth's surface of a satellite in geostationary orbit (above the equator), using the following data: radius of earth $=6370 \mathrm{~km}$
mass of earth $\approx 6 \times 10^{24} \mathrm{~kg}$
$G \approx 7 \times 10^{-11}$
Gravitational force $=\frac{G M m}{r^{2}}$

Solution

Steps:
(i) Set up F = ma
(ii) Establish ω
(iii) Solve for r
$\frac{G M m}{r^{2}}=m \omega^{2} r$,
where M is the mass of the Earth, m is the mass of the satellite, r is the distance of the satellite from the Earth's centre, and ω is its angular speed
$\omega=\frac{2 \pi}{24 \times 3600} \mathrm{rads}^{-1}$
Hence $r^{3}=\frac{G M}{\omega^{2}} \approx \frac{6.67 \times 10^{-11} \times 5.98 \times 10^{24} \times(24 \times 3600)^{2}}{(2 \pi)^{2}}=7.5421 \times 10^{22}$
and $r=4.22504 \times 10^{7} \mathrm{~m}$; ie 42250 km
Thus, height above Earth's surface is
$42250-6380=35900 \mathrm{~km}(2 s f)$

