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(A) Contingency Tables 

 

 

 

 

 

 

(1) Contingency Tables are used to perform a hypothesis test  

about possible association between two factors, such as gender  

and voting. 

We start with the table of observed frequencies, 𝑂𝑖  (where, in this 

 table, 𝑂1 would be 45 and 𝑂2 could be 37, with 𝑂8 being 9; though  

𝑂2 could equally well have been 24). 

 

This table is used to generate a table of expected frequencies, 𝐸𝑖 .  
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These are calculated on the basis that the null hypothesis (no 

association) is true. We reason that, as 
69

185
 of the voters are 

Conservatives, we would expect there to be 
69

185
× 100 

male Conservative voters, assuming that there is no association  

between gender and voting. 

 

Another way of performing the calculation is to say that, of the 

total of 185 voters, 
69

185
 of these are expected to be Conservatives, 

and of these 
100

185
 are expected to be male, so that the expected 

number of male Conservative voters is 185 ×
69

185
×

100

185
 

(this approach has the advantage that each 𝐸𝑖  has the same form). 

[Note that we could alternatively have taken the total of  

Conservative voters and multiplied by the proportion of male  

voters, to give 
100

185
× 69] 

 

Applying this to each of the 𝑂𝑖 , we thus obtain the table of 

expected frequencies: 
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(2) The next step is to measure the deviation of the 𝑂𝑖𝑠  from  

the 𝐸𝑖𝑠. In order to avoid positive and negative deviations  

cancelling out, the 𝑂𝑖 − 𝐸𝑖   are squared. It is shown in (C) that by 

forming  𝑋2 = ∑
(𝑂𝑖−𝐸𝑖)2

𝐸𝑖

𝑛
𝑖=1   , we obtain a test statistic that doesn’t 

depend (significantly at least) on the total number of  

observations (𝑁 = ∑ 𝑂𝑖
𝑛
𝑖=1 ). 

 

As discussed in (C), when there is no association between the  

factors, this test statistic has been found to have an approximate  

𝜒2 distribution, with a certain number of degrees of freedom  

(discussed below). 

 

Thus, for the example above: 
(𝑂1−𝐸1)2

𝐸1
=

(45−37.297)2

37.297
= 1.5909 

and  ∑
(𝑂𝑖−𝐸𝑖)2

𝐸𝑖

8
𝑖=1 = 5.9314, as shown below. 
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Note: Another implication of including (𝑂𝑖 − 𝐸𝑖)2 is that large  

differences are given a bigger weighting. 

 

(3) When there are just two rows or two columns (or both), there 

is a case for having a separate column for (𝑂𝑖 − 𝐸𝑖)2, as a check, as 

 this value will be the same for the two cells in a particular column 

(row), where there are two rows (columns): if one of the 𝑂𝑖  is  

larger than the corresponding 𝐸𝑖 , then the other 𝑂𝑖  in the same 

column must be smaller by the same amount, in order for the  

column total of the 𝑂𝑖  to be the same as that of the 𝐸𝑖 . 
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(4) From the 𝜒2 table (see below), we can find the 'critical value'  

of  𝑋2; eg the value of 𝑋2 that will only be exceeded in 5% of  

cases, when there is no association between the factors. [Note  

that, confusingly, the table refers to the 𝜒2 variable as 𝑋, rather  

than 𝑋2. ] The degrees of freedom are explained below. 

 

 

 

(5) Degrees of freedom 

Various statistical distributions depend on a parameter known as 

the degrees of freedom. 

Clearly when the observed and expected frequencies are being  

compared in a Contingency table, they are not entirely  

independent, as the row and column totals of the observed  

frequencies  have been used to determine the expected  

frequencies. The degrees of freedom measure the extent of  
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independence. Had the expected frequencies been determined 

without reference to the observed frequencies, then, in the case  

of an  𝑚 × 𝑛  table, all 𝑚𝑛 terms of 𝑋2 would be independent. 

To obtain the degrees of freedom (d.f. - denoted by 𝜈 [nu]), we  

deduct 1 from 𝑚𝑛 for each constraint. 

The deductions are as follows: 

grand total fixed:  −1    

row totals fixed  −(𝑚 − 1) [last one covered by grand total] 

column totals fixed  −(𝑛 − 1)   [last one covered by grand total] 

 

This gives  𝜈 = 𝑚𝑛 − 1 − (𝑚 − 1) − (𝑛 − 1) 

= 𝑚𝑛 − 𝑚 − 𝑛 + 1 = (𝑚 − 1)(𝑛 − 1)  

 

(6) Hypothesis Test 

For the above example: 

𝐻0:  there is no association between gender and voting habits 

𝐻1: there is some association 

significance level: eg 5% 

Reject 𝐻0  if  𝑋2 = ∑
(𝑂𝑖−𝐸𝑖)2

𝐸𝑖
> 𝜒2

𝜈
𝑛
𝑖=1  

In the example above, 𝜈 = (2 − 1)(4 − 1) = 3, 

so that the critical value, 𝜒2
𝜈 (at the 5% level) is 7.815 

As 𝑋2 = 5.9314 < 7.815, we accept 𝐻0, and conclude that there  

isn't sufficient evidence of an association between gender and  

voting habits. 
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(7) The 𝜒2 test is one-tailed. The right-hand critical values are the  

ones that are used when performing hypothesis tests. However, a 

very low value of 𝑋2 could be regarded as suspicious (eg the data  

might have been rigged). In theory, this could be tested for using  

the left-hand critical values from the table. 

 

(8) Special Situations 

(i) Small expected frequencies 

The test can be shown to be unreliable when any of the 𝐸𝑖  are less 

than 5. 

To get round this, factors (of similar type) need to be grouped  

together. Thus, in the above example, had the "Female/Others"  

cell had an expected frequency less than 5, then we might group  

the Liberal and Others factors together. There would be no  

justification, however, for combining Conservatives and Others  

(as the Conservatives are not a minor party).  

 

(ii) Yates' Correction for a 2 × 2 table 

The 𝜒2 model can be shown to be less accurate for 2 × 2 tables,  

and the following adjusted value for 𝑋2 has been found to be  

more appropriate:  ∑
(|𝑂𝑖−𝐸𝑖|−0.5)2

𝐸𝑖

𝑛
𝑖=1   

Note that, in the case of a 2 × 2 table, all the values of 

(|𝑂𝑖 − 𝐸𝑖| − 0.5)2 will be the same. 
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(9) Notes 

(i) The sample of observed frequencies must be random. 

(ii) Once 𝐻1 has been accepted,  values of  
(𝑂𝑖−𝐸𝑖)2

𝐸𝑖
  for particular 

cells may suggest a theory as to the nature of an association  

between factors. 

(iii) Association does not imply "cause & effect". For example,  

level of education and future wealth: although there is highly  

likely to be cause and effect here, there could also be indirect  

factors connected with genetics or upbringing, which have an  

impact on both level of education and future wealth.  

 

(B) Goodness of Fit 

𝜒2 tables are used in a similar way to Contingency tables.  

Instead of calculating expected frequencies from the row and 

column  

totals of the Contingency table, they are obtained from a supposed 

model distribution. 

 

Example: To test whether a die is biased, we could roll it 600  

times, and observe the numbers of 1s, 2s etc.  There would be 6  

cells or 'classes', and the expected frequency in each case would  

be 100. Then 𝑋2 = ∑
(𝑂𝑖−𝐸𝑖)2

𝐸𝑖

6
𝑖=1   

In general, the 𝐸𝑖  are obtained by multiplying the total observed 

frequency by the probability for class 𝑖, according to the model  
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distribution;  ie 𝐸𝑖 = 𝑝𝑖𝑁, where  𝑁 = ∑ 𝑂𝑖
𝑛
𝑖=1  

(so that ∑ 𝐸𝑖 = ∑ 𝑝𝑖𝑁 = 𝑁𝑛
𝑖=1 ∑ 𝑝𝑖 = 𝑁𝑛

𝑖=1
𝑛
𝑖=1 ) 

 

The number of degrees of freedom is the number of free variables,  

which is the number of classes less the number of restrictions.  

Here there is one restriction: the total of the observed frequencies 

 has to equal 600. Thus, 𝜈 = 6 − 1 = 5 

If, in addition, the observed frequencies are used to estimate  

parameters of the model distribution, then the degrees of  

freedom will be given by: 

𝜈 = number of classes − 1 − number of parameters estimated  

 

In general, the null and alternative hypotheses would be: 

𝐻0:  the data are drawn from the model population 

𝐻1: this is not the case 

 

Notes 

(i) If a model has been based on data, then fresh data are needed  

when carrying out the Goodness of Fit test. 

(ii) For continuous data, observations would need to be grouped  

into suitable classes. Discrete data may also be grouped. 

(iii) One use of the Goodness of Fit test is in establishing whether  

data come from a Normal distribution (for example, when  

deciding whether a 𝑡-test is appropriate for a small sample). The  

mean and variance of the supposed Normal distribution are  
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estimated from the data. 

However, if a 𝑡-test is subsequently carried out, it will be  

necessary to obtain another sample, as the original sample is not  

entirely random: it is a sample that passes the 𝜒2 test for  

Normality. 

(iv) Class widths need not be the same. As a rule of thumb, it is  

best to choose them in such a way that the expected frequencies  

are in the range 8 − 12. Thus the class width would be narrower  

where the model distribution has the greatest density. 

(v) In the case of the Binomial distribution 𝐵(𝑛, 𝑝), 𝑛 doesn't 

count as a parameter.  

 

(C) Justification for the test statistic 

(1) At first glance, the test statistic 𝑋2 = ∑
(𝑂𝑖−𝐸𝑖)2

𝐸𝑖

𝑛
𝑖=1   would 

appear to suffer from the following drawback: If a  

different scale were adopted, so that (for example) the 𝑂𝑖  were all  

multiplied by 10, then the 𝐸𝑖  would also be expected to be  

multiplied by 10. Then, with the same 𝑛 (the number of  

classes), 𝑋2 would be multiplied by 
102

10
= 10. So the test statistic  

is greater relative to the critical value (which remains the same).  

This apparent drawback is resolved in (2). 

 

(2) Let 𝑁 = ∑ 𝑂𝑖
𝑛
𝑖=1  , where there are 𝑛 cells in the table (for  

either a Contingency Table or one for Goodness of Fit). Then  
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∑ 𝐸𝑖
𝑛
𝑖=1 = 𝑁 also. 

Then 𝑋2 = ∑
(𝑂𝑖−𝐸𝑖)2

𝐸𝑖

𝑛
𝑖=1 = ∑

𝑂𝑖
2

𝐸𝑖
− 2 ∑ 𝑂𝑖 + ∑ 𝐸𝑖

𝑛
𝑖=1

𝑛
𝑖=1

𝑛
𝑖=1  

= (∑
𝑂𝑖

2

𝐸𝑖
) − 2𝑁 + 𝑁𝑛

𝑖=1    

= (∑
𝑂𝑖

2

𝐸𝑖
) − 𝑁𝑛

𝑖=1   

Then each 
𝑂𝑖

2

𝐸𝑖
 term is of the same order of magnitude as 𝑂𝑖  (or 𝐸𝑖), 

and so 𝑋2 is of the same order of magnitude as (∑ 𝑂𝑖
𝑛
𝑖=1 ) − 𝑁 

 = 𝑁 − 𝑁 = 0; ie 𝑋2 will be a small number (not dependent on 𝑁). 

[The argument in (1) doesn’t take account of the fact that the test  

statistic can be written as the difference of two items of the same  

order of magnitude. (Had it been the sum, then the argument in  

(1) would have been valid.)] 

 

(3) The statistician Karl Pearson demonstrated (in 1900) that,  

when the the null hypothesis of the test is correct (ie when there  

is no association between the factors), and when the 𝐸𝑖  are  

obtained from 𝐸𝑖 = 𝑝𝑖𝑁, where the 𝑝𝑖  are known (and not  

based on the observed frequencies 𝑂𝑖), then the distribution of  

the test statistic 𝑋2 = (∑
𝑂𝑖

2

𝐸𝑖
) − 𝑁𝑛

𝑖=1   tends to that of the 𝜒𝑛−1
2 

random variable  ∑ 𝑍𝑖
2𝑛−1

𝑖=1 , as 𝑁 → ∞, where the 𝑍𝑖 are  

independent standardised Normal random variables (𝑛 − 1 being  

the degrees of freedom). 

This corresponds to a Goodness of Fit test where the model is not  
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based on the observed frequencies (eg rolling a die, where the 

𝑝𝑖 =
1

6
), and the degrees of freedom is the number of cells 𝑛, less  

one (due to the restriction that  ∑ 𝐸𝑖
𝑛
𝑖=1 = ∑ 𝑂𝑖

𝑛
𝑖=1 ). 

 

(4) Pearson also demonstrated that, when the 𝑝𝑖  are estimated 

from the observed frequencies, 𝑋2 = (∑
𝑂𝑖

2

𝐸𝑖
) − 𝑁𝑛

𝑖=1  is still 

approximately distributed as 𝜒2 for large enough 𝑁, with a  

reduction of 1 in the degrees of freedom for each estimation of a  

parameter of the model (leading to the 𝑝𝑖). 

 

This situation also covers Contingency Tables, where the 𝐸𝑖  are  

derived from the observed frequencies; again, with an  

appropriate reduction in the degrees of freedom. 

 

 

 


