Centre of Mass - Q2 [8 marks] (1/6/21)

Exam Boards

OCR : Mechanics (Year 2)
MEI: Mechanics b
AQA: Mechanics (Year 2)
Edx: -

The region between the curve $y=x^{3}-x^{2}$ and the x-axis is rotated by 360° about the x-axis. Find the centre of mass of the solid of revolution obtained. [8 marks]

The region between the curve $y=x^{3}-x^{2}$ and the x-axis is rotated by 360° about the x-axis. Find the centre of mass of the solid of revolution obtained. [8 marks]

Solution

By symmetry, $\bar{y}=0$ [1 mark]
$y=x^{3}-x^{2}=x^{2}(x-1)$ meets the x-axis at $x=0 \& x=1$
[1 mark]
$V \bar{x}=\int_{0}^{1} x\left(\pi y^{2} d x\right)$, where $V=\int_{0}^{1} \pi y^{2} d x \quad$ [1 mark]
[$\pi y^{2} d x$ is the volume of the disc of width $d x$ at position x]
Thus $V=\pi \int_{0}^{1} x^{4}(x-1)^{2} d x=\pi \int_{0}^{1} x^{6}-2 x^{5}+x^{4} d x$ [1 mark]
$=\pi\left[\frac{1}{7} x^{7}-\frac{2}{6} x^{6}+\frac{1}{5} x^{5}\right]_{0}^{1}$
$=\pi\left(\frac{1}{7}-\frac{2}{6}+\frac{1}{5}\right)=\frac{(30-70+42) \pi}{210}=\frac{\pi}{105}$ units 3 [2 marks]
And $\bar{x}=105 \int_{0}^{1} x^{7}-2 x^{6}+x^{5} d x$
$=105\left[\frac{1}{8} x^{8}-\frac{2}{7} x^{7}+\frac{1}{6} x^{6}\right]_{0}^{1}$
$=105\left(\frac{1}{8}-\frac{2}{7}+\frac{1}{6}\right)=\frac{105(21-48+28)}{168}$
$=\frac{105}{168}=\frac{35}{56}=\frac{5}{8}=0.625[2 \mathrm{marks}]$
Thus the centre of mass is $(0.625,0)$

