Centre of Mass - Q1 [12 marks](1/6/21)

Exam Boards

OCR : Mechanics (Year 2)
MEI: Mechanics b
AQA: Mechanics (Year 2)
Edx: Mechanics 2 (Year 2)

Find the centre of mass of a semi-circular lamina of radius r.
(a) by integrating wrt x [7 marks]
(b) by integrating wrt y [5 marks]

Find the centre of mass of a semi-circular lamina of radius r.
(a) by integrating wrt x [7 marks]
(b) by integrating wrt y [5 marks]

Solution

By symmetry, the CoM lies halfway across, as shown in the diagram. [1 mark]

We just need to find the y component, \bar{y}. Again, by symmetry, \bar{y} for a quarter circle will equal \bar{y} for the semi-circle. [1 mark]
(a)

Considering vertical strips as shown in the diagram,
each strip has area $y \delta x$, and the total area of the quarter circle is $\frac{1}{4} \pi r^{2} . \bar{y}$ for each strip is $\frac{y}{2}$.

Weighting the CoM of each strip by its area and summing gives

$$
\begin{aligned}
& \bar{y}=\lim _{\delta x \rightarrow 0} \frac{1}{\left(\frac{\pi r^{2}}{4}\right)} \sum \frac{y}{2} \cdot y \delta x \\
& =\frac{1}{\left(\frac{\pi r^{2}}{4}\right)} \int_{0}^{r} \frac{y}{2} \cdot y d x[2 \text { marks }] \\
& =\frac{2}{\pi r^{2}} \int_{0}^{r} r^{2}-x^{2} d x, \text { since } x^{2}+y^{2}=r^{2}[1 \text { mark }] \\
& =\frac{2}{\pi r^{2}}\left[r^{2} x-\frac{1}{3} x^{3}\right]_{0}^{r}=\frac{2}{\pi r^{2}}\left(\frac{2 r^{3}}{3}\right)=\frac{4 r}{3 \pi}[2 \text { marks }]
\end{aligned}
$$

(b)

Considering horizontal strips as shown in the diagram, each strip has area $x \delta y$, and \bar{y} for each strip is y.

Then $\bar{y}=\frac{1}{\left(\frac{\pi r^{2}}{4}\right)} \int_{0}^{r} y \cdot x d x$
$=\frac{4}{\pi r^{2}} \int_{0}^{r} \sqrt{r^{2}-x^{2}} \cdot x d x \quad[2$ marks]

As $\frac{d}{d x}\left(r^{2}-x^{2}\right)=-2 x$ and we have an x in the integrand, we can make the substitution $u=r^{2}-x^{2}$, so that $d u=-2 x d x$ and $\bar{y}=\frac{4}{\pi r^{2}} \int_{r^{2}}^{0} \sqrt{u} .\left(-\frac{1}{2}\right) d u=\frac{2}{\pi r^{2}} \int_{0}^{r^{2}} \sqrt{u} . d u \quad$ [2 marks] $=\frac{2}{\pi r^{2}}\left[\frac{u^{\frac{3}{2}}}{\left(\frac{3}{2}\right)}\right] r_{0}^{r^{2}}=\frac{4 r}{3 \pi}$, as before [1 mark]

