Algorithms - Q4 (20/11/23)

A list of n numbers is sorted by making passes through an algorithm.

To make a pass, compare the 1 st and 2 nd numbers. If necessary, swap them so that the 1 st number is less than or equal to the 2 nd number. Then repeat with the 2 nd and 3rd numbers, and so on until the ($n-1$)st and nth numbers have been dealt with.

Repeat until a pass occurs with no swaps.
What are the minimum and maximum number of comparisons that are required?

Solution

If the numbers are already in increasing order, then $n-1$ comparisons are required to complete the 1st pass, and the algorithms stops at this point, as there are no swaps.

So $n-1$ is the minimum number of comparisons.
If the largest number is in the 1st position, and the smallest number is in the last position, then $n-1$ passes will be required to move the smallest number to the 1st position, and each of these passes involve $n-1$ comparisons. [Note that, in contrast to the Bubble Sort algorithm, the last number isn't removed after each pass.] Each of these passes will involve a swap, and so a further pass (involving $n-1$ comparisons) will be required. This gives a total of $n(n-1)$ comparisons.

So $n(n-1)$ is the maximum number of comparisons.

Example 1: 5231 [Note that the numbers need not be in decreasing order]

[] indicates a comparison with a swap
() indicates a comparison without a swap

1st pass: [25]31, 2[35]1, 23[15]
2nd pass: (23)15, $2[13] 5,21(35)$
3rd pass: [12] $35,1(23) 5,12(35)$
4th pass: (12)35, 1(23)5, 12(35)
So $4 \times 3=12$ comparisons

Example 2: 5213 (where the smallest number is not in the last position)

1st pass: [25]13, 2[15]3, 21[35]
2nd pass: $[12] 35,1(23) 5,12(35)$
3rd pass: (12)35, 1(23)5, 12(35)

