Algorithms - Q1 (20/11/23)
(i) By performing traces, or otherwise, establish what the following algorithm achieves.

10 Input N
$20 e=0.0001$
$30 L=1000$
$40 F=0$
$50 x=\frac{N}{2}$
$60 y=\frac{N}{x}$
$70 z=x$
$80 x=\frac{x+y}{2}$
90 If $|x-z|<e$ Then Goto 130
$100 F=F+1$
110 If $F>L$ Then Goto 140
120 Goto 60
130 Print x
140 Print "End"
150 END
(ii) What roles do $e, \mathrm{~F}$ and L play in the algorithm?

Solution

(i) The algorithm finds the square root of \boldsymbol{N}.
(ii) \boldsymbol{e} determines when the successive estimates are close enough together
\boldsymbol{F} counts the number of iterations
\boldsymbol{L} is the limit imposed on the number of iterations
[Note that \boldsymbol{e} and \boldsymbol{L} are 'hard-coded', to avoid having too many inputs, but that their values are stored at the start of the program, so that changes can easily be made.]

