$y^2 = f(x)$ (2 pages; 2/6/23)

(1) The graph is undefined where f(x) < 0.

(2) There will be two branches of the graph: $y = \pm \sqrt{f(x)}$ (so that the graph is symmetric about the *x*-axis).

(3) $y^2 = y$ when y = 0 or 1; so these are the *x*-values where $y^2 = f(x)$ crosses y = f(x)

(4) Differentiating wrt x, $2y \frac{dy}{dx} = f'(x)$ (A)

Considering the branch for which $y \ge 0$, the gradient of

 $y^2 = f(x)$ (or $y = \sqrt{f(x)}$); ie $\frac{dy}{dx}$ has the same sign as the gradient of y = f(x); ie f'(x)

Also, the top branch of $y^2 = f(x)$ has turning points when y = f(x) has turning points.

(5) Provided $f'(x) \neq 0$, (A) $\Rightarrow \frac{dy}{dx} = \infty$ (ie the graph is vertical) when y = 0

$$y = x^2 - 1$$
 and $y^2 = x^2 - 1$