$y^{2}=f(x)$ (2 pages; 2/6/23)
(1) The graph is undefined where $f(x)<0$.
(2) There will be two branches of the graph: $y= \pm \sqrt{f(x)}$ (so that the graph is symmetric about the x-axis).
(3) $y^{2}=y$ when $y=0$ or 1 ; so these are the x-values where $y^{2}=f(x) \operatorname{crosses} y=f(x)$
(4) Differentiating wrt $x, 2 y \frac{d y}{d x}=f^{\prime}(x)$

Considering the branch for which $y \geq 0$, the gradient of $y^{2}=f(x)($ or $y=\sqrt{f(x)})$; ie $\frac{d y}{d x}$ has the same sign as the gradient of $y=f(x)$; ie $f^{\prime}(x)$

Also, the top branch of $y^{2}=f(x)$ has turning points when $y=f(x)$ has turning points.
(5) Provided $f^{\prime}(x) \neq 0,(\mathrm{~A}) \Rightarrow \frac{d y}{d x}=\infty$ (ie the graph is vertical) when $y=0$

$$
y=x^{2}-1 \text { and } y^{2}=x^{2}-1
$$

