Vectors Q9 (3/7/23)

Find the cartesian form of the plane

$$
\underline{r}=\left(\begin{array}{c}
0 \\
-2 \\
-1
\end{array}\right)+s\left(\begin{array}{l}
1 \\
4 \\
4
\end{array}\right)+t\left(\begin{array}{l}
2 \\
3 \\
1
\end{array}\right)
$$

Solution
$\underline{n}=\left(\begin{array}{l}1 \\ 4 \\ 4\end{array}\right) \times\left(\begin{array}{l}2 \\ 3 \\ 1\end{array}\right)=\left|\begin{array}{lll}\underline{i} & 1 & 2 \\ \underline{j} & 4 & 3 \\ \underline{\underline{k}} & 4 & 1\end{array}\right|=\left(\begin{array}{c}-8 \\ 7 \\ -5\end{array}\right)$
$\left(\left(\begin{array}{l}x \\ y \\ z\end{array}\right)-\left(\begin{array}{c}0 \\ -2 \\ -1\end{array}\right)\right) \cdot\left(\begin{array}{c}-8 \\ 7 \\ -5\end{array}\right)=0 \Rightarrow-8 x+7(y+2)-5(z+1)=0$
$\Rightarrow-8 x+7 y-5 z=-9$ or $8 x-7 y+5 z=9$
Alternative version (once \underline{n} has been found)
Let plane be $-8 x+7 y-5 z=p$
As $\left(\begin{array}{c}0 \\ -2 \\ -1\end{array}\right)$ lies in the plane, $-8(0)+7(-2)-5(-1)=p$;
so $p=-9$ etc
Alternative method
Eliminate s \& t from the 3 simultaneous equations.

