Vectors Q7 (3/7/23)

Find the angle between the planes $x=2$ and $y+2 z=3$

Solution
The two normal vectors are $\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right) \&\left(\begin{array}{l}0 \\ 1 \\ 2\end{array}\right)$, and $\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right) \cdot\left(\begin{array}{l}0 \\ 1 \\ 2\end{array}\right)=0$,
so that $\cos \theta=0$ (where θ is the angle between the normals), and hence the planes are perpendicular.
[The plane $x=2$ is parallel to $x=0$; ie the y-z plane. The plane $y+2 z=3$ can be formed from the line $y+2 z=3$ in the $y-z$ plane, extended in the positive and negative x directions (ie perpendicular to the $y-z$ plane.]

