Vectors Q4 (3/7/23)

Find $c, a \& b$ such that $\left(\begin{array}{l}2 \\ 3 \\ c\end{array}\right)=a\left(\begin{array}{c}-1 \\ 0 \\ 3\end{array}\right)+b\left(\begin{array}{l}0 \\ 2 \\ 4\end{array}\right)$
[ie such that the 3 vectors are not linearly independent]

Solution

As the position vector $\left(\begin{array}{l}2 \\ 3 \\ c\end{array}\right)$ is in the plane containing the Origin and the position vectors $\left(\begin{array}{c}-1 \\ 0 \\ 3\end{array}\right) \&\left(\begin{array}{l}0 \\ 2 \\ 4\end{array}\right)$, it follows that $\left(\begin{array}{l}2 \\ 3 \\ c\end{array}\right)$ is perpendicular to the normal to that plane; ie perpendicular to

$$
\begin{aligned}
& \left(\begin{array}{c}
-1 \\
0 \\
3
\end{array}\right) \times\left(\begin{array}{l}
0 \\
2 \\
4
\end{array}\right)=\left|\begin{array}{ccc}
\underline{i} & -1 & 0 \\
\underline{j} & 0 & 2 \\
\underline{k} & 3 & 4
\end{array}\right| \text {; so that } \\
& \left(\begin{array}{l}
2 \\
3 \\
c
\end{array}\right) \cdot\left|\begin{array}{ccc}
\frac{i}{j} & -1 & 0 \\
\bar{j} & 0 & 2 \\
\underline{k} & 3 & 4
\end{array}\right|=0 \text {, and thus }\left|\begin{array}{ccc}
2 & -1 & 0 \\
3 & 0 & 2 \\
c & 3 & 4
\end{array}\right|=0
\end{aligned}
$$

Alternative Approach 1

The 3 vectors form a parallelepiped of zero volume, so that the scalar triple product of the vectors is zero.]

Alternative Approach 2

The required relation can be written as
$\left(\begin{array}{l}2 \\ 3 \\ c\end{array}\right)-a\left(\begin{array}{c}-1 \\ 0 \\ 3\end{array}\right)-b\left(\begin{array}{l}0 \\ 2 \\ 4\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$,
which implies a solution of $x\left(\begin{array}{l}2 \\ 3 \\ c\end{array}\right)+y\left(\begin{array}{c}-1 \\ 0 \\ 3\end{array}\right)+z\left(\begin{array}{l}0 \\ 2 \\ 4\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$
other than $x=y=z=0$,
and for there to be more than one solution to this matrix equation, we require the determinant to be zero.

Then $\left|\begin{array}{ccc}2 & -1 & 0 \\ 3 & 0 & 2 \\ c & 3 & 4\end{array}\right|=0 \Rightarrow 2(-6)-(-1)(12-2 c)=0$
$\Rightarrow c=0$
$\left(\begin{array}{l}2 \\ 3 \\ 0\end{array}\right)=a\left(\begin{array}{c}-1 \\ 0 \\ 3\end{array}\right)+b\left(\begin{array}{l}0 \\ 2 \\ 4\end{array}\right)$
$\Rightarrow 2=-a$
$3=2 b$
$\& 0=3 a+4 b$
so that $a=-2 \& b=\frac{3}{2}$

