Vectors Q3 (3/7/23)

Find the shortest distance between the lines
$\frac{x-1}{2}=\frac{y+3}{5}=\frac{z-2}{3}$ and $\frac{x}{1}=\frac{y-4}{2}=\frac{z+1}{2}$, identifying the points on the
lines at which this shortest distance occurs.

Solution

Method 1

General points on the two lines are
$\overrightarrow{O X}=\left(\begin{array}{c}1+2 \lambda \\ -3+5 \lambda \\ 2+3 \lambda\end{array}\right)$ and $\overrightarrow{O Y}=\left(\begin{array}{c}\mu \\ 4+2 \mu \\ -1+2 \mu\end{array}\right)$
At the closest approach of the two lines, $\overrightarrow{X Y}$ will be perpendicular to both lines, so that
$\overrightarrow{X Y} \cdot\left(\begin{array}{l}2 \\ 5 \\ 3\end{array}\right)=0$ and $\overrightarrow{X Y} \cdot\left(\begin{array}{l}1 \\ 2 \\ 2\end{array}\right)=0$,
so that $\left(\begin{array}{c}\mu-(1+2 \lambda) \\ 4+2 \mu-(-3+5 \lambda) \\ -1+2 \mu-(2+3 \lambda)\end{array}\right) \cdot\left(\begin{array}{l}2 \\ 5 \\ 3\end{array}\right)=0$ and
$\left(\begin{array}{c}\mu-(1+2 \lambda) \\ 4+2 \mu-(-3+5 \lambda) \\ -1+2 \mu-(2+3 \lambda)\end{array}\right) \cdot\left(\begin{array}{l}1 \\ 2 \\ 2\end{array}\right)=0$,
giving $(2 \mu-2-4 \lambda)+(35+10 \mu-25 \lambda)+(-9+6 \mu-9 \lambda)=0$
or $18 \mu-38 \lambda=-24$; ie $9 \mu-19 \lambda=-12$ (1)
and $(\mu-1-2 \lambda)+(14+4 \mu-10 \lambda)+(-6+4 \mu-6 \lambda)=0$
$9 \mu-18 \lambda=-7$
Then (1) $-(2) \Rightarrow-\lambda=-5$, so that $\lambda=5$ and, from (2),
$\mu=\frac{1}{9}(18(5)-7)=\frac{83}{9}$
So $\overrightarrow{O X}=\left(\begin{array}{l}11 \\ 22 \\ 17\end{array}\right)$ and $\overrightarrow{O Y}=\frac{1}{9}\left(\begin{array}{c}83 \\ 202 \\ 157\end{array}\right)$
and $\overrightarrow{X Y}=\frac{1}{9}\left(\begin{array}{c}83-99 \\ 202-198 \\ 157-153\end{array}\right)=\frac{1}{9}\left(\begin{array}{c}-16 \\ 4 \\ 4\end{array}\right)=\frac{4}{9}\left(\begin{array}{c}-4 \\ 1 \\ 1\end{array}\right)$,
so that $|\overrightarrow{X Y}|=\frac{4}{9} \sqrt{16+1+1}=\frac{4 \sqrt{18}}{9}=\frac{4 \sqrt{2}}{3}$

Method 2

If $\underline{\hat{n}}$ is a unit vector perpendicular to both lines, then we need $\overrightarrow{O X}$ and $\overrightarrow{O Y}$ such that $\overrightarrow{O X}+d \underline{\hat{n}}=\overrightarrow{O Y}$, and the shortest distance will then be $|d|$.

A vector perpendicular to both lines is $\left(\begin{array}{l}2 \\ 5 \\ 3\end{array}\right) \times\left(\begin{array}{l}1 \\ 2 \\ 2\end{array}\right)=\left|\begin{array}{lll}\underline{i} & 2 & 1 \\ \underline{j} & 5 & 2 \\ \underline{k} & 3 & 2\end{array}\right|$ $=\left(\begin{array}{c}4 \\ -1 \\ -1\end{array}\right)$, so that $\underline{\hat{n}}=\frac{1}{\sqrt{18}}\left(\begin{array}{c}4 \\ -1 \\ -1\end{array}\right)$

Then $\overrightarrow{O X}+d \underline{\hat{n}}=\overrightarrow{O Y}$ gives $\left(\begin{array}{c}1+2 \lambda \\ -3+5 \lambda \\ 2+3 \lambda\end{array}\right)+D\left(\begin{array}{c}4 \\ -1 \\ -1\end{array}\right)=\left(\begin{array}{c}\mu \\ 4+2 \mu \\ -1+2 \mu\end{array}\right)$, where $D=\frac{d}{\sqrt{18}}$,
so that $2 \lambda+4 D-\mu=-1$ (1)

$$
\begin{align*}
& 5 \lambda-D-2 \mu=7 \tag{2}\\
& 3 \lambda-D-2 \mu=-3 \tag{3}
\end{align*}
$$

Then (2) $-(3) \Rightarrow 2 \lambda=10$, so that $\lambda=5$
and (1) \& (2) become $4 D-\mu=-11$ (4) and $-D-2 \mu=-18$ (5)

Then $2(4)-(5) \Rightarrow 9 D=-4$, so that $|d|=\sqrt{18}|D|=\frac{4 \sqrt{18}}{9}=\frac{4 \sqrt{2}}{3}$
and, from (1), $\mu=10-\frac{16}{9}+1=\frac{83}{9}$
and $\overrightarrow{O X}$ and $\overrightarrow{O Y}$ can then be found, as in (i).

Method 3
Suppose that the two closest points are
$\overrightarrow{O X}=\left(\begin{array}{c}1+2 \lambda \\ -3+5 \lambda \\ 2+3 \lambda\end{array}\right)$ and $\overrightarrow{O Y}=\left(\begin{array}{c}\mu \\ 4+2 \mu \\ -1+2 \mu\end{array}\right)$
A vector perpendicular to both lines is $\left(\begin{array}{l}2 \\ 5 \\ 3\end{array}\right) \times\left(\begin{array}{l}1 \\ 2 \\ 2\end{array}\right)=\left|\begin{array}{lll}\underline{i} & 2 & 1 \\ \bar{j} & 5 & 2 \\ \underline{k} & 3 & 2\end{array}\right|$
$=\left(\begin{array}{c}4 \\ -1 \\ -1\end{array}\right)$, and Y can be reached from X by travelling a certain distance in this direction.
$\operatorname{Thus}\left(\begin{array}{c}1+2 \lambda \\ -3+5 \lambda \\ 2+3 \lambda\end{array}\right)+k\left(\begin{array}{c}4 \\ -1 \\ -1\end{array}\right)=\left(\begin{array}{c}\mu \\ 4+2 \mu \\ -1+2 \mu\end{array}\right)$,
or $\left(\begin{array}{l}2 \lambda+4 k-\mu \\ 5 \lambda-k-2 \mu \\ 3 \lambda-k-2 \mu\end{array}\right)=\left(\begin{array}{c}-1 \\ 7 \\ -3\end{array}\right)$
ie $\left(\begin{array}{ccc}2 & 4 & -1 \\ 5 & -1 & -2 \\ 3 & -1 & -2\end{array}\right)\left(\begin{array}{l}\lambda \\ k \\ \mu\end{array}\right)=\left(\begin{array}{c}-1 \\ 7 \\ -3\end{array}\right)$
$\Rightarrow\left(\begin{array}{l}\lambda \\ k \\ \mu\end{array}\right)=\frac{1}{(0+45-27)}\left(\begin{array}{ccc}0 & 4 & -2 \\ 9 & -1 & 14 \\ -9 & -1 & -22\end{array}\right)^{T}\left(\begin{array}{c}-1 \\ 7 \\ -3\end{array}\right)$
$=\frac{1}{18}\left(\begin{array}{ccc}0 & 9 & -9 \\ 4 & -1 & -1 \\ -2 & 14 & -22\end{array}\right)\left(\begin{array}{c}-1 \\ 7 \\ -3\end{array}\right)=\frac{1}{18}\left(\begin{array}{c}90 \\ -8 \\ 166\end{array}\right)=\frac{1}{9}\left(\begin{array}{c}45 \\ -4 \\ 83\end{array}\right)$
Hence the two closest points are $\left(\begin{array}{l}11 \\ 22 \\ 17\end{array}\right)$ and $\left(\begin{array}{c}\frac{83}{9} \\ \frac{202}{9} \\ \frac{157}{9}\end{array}\right)$,
and the distance between them is $\left|-\frac{4}{9}\right| \sqrt{4^{2}+(-1)^{2}+(-1)^{2}}$
$=\frac{4 \sqrt{18}}{9}=\frac{4 \sqrt{2}}{3}$

