Vectors Q24 (3/7/23)

In the diagram below, ABCD is a kite. Find \overrightarrow{OD} if $\overrightarrow{OA} = \begin{pmatrix} -1 \\ 4/3 \\ 7 \end{pmatrix}$,

$$\overrightarrow{OB} = \begin{pmatrix} 4\\4/3\\2 \end{pmatrix} \& \overrightarrow{OC} = \begin{pmatrix} 6\\16/3\\2 \end{pmatrix}$$

[from AEA, June 2009]

Solution

We need to take account of the special features of this case, namely that AC is perpendicular to BD (*) and bisects BD (**) (which enables D to be uniquely determined from A, B & C).

We can take an alternative route to D, in order to involve the other points, writing:

 $\overrightarrow{OD} = \overrightarrow{OB} + 2\overrightarrow{BE}$ [this takes account of (**)]

To record the fact that E lies on AC, we write $\overrightarrow{BE} = \overrightarrow{BA} + \lambda \overrightarrow{AC}$

We also need to take account of (*): \overrightarrow{BE} . $\overrightarrow{AC} = 0$

Now
$$\overrightarrow{BA} = \begin{pmatrix} -5\\0\\5 \end{pmatrix}$$
 and $\overrightarrow{AC} = \begin{pmatrix} 7\\4\\-5 \end{pmatrix}$, so that $\overrightarrow{BE} = \begin{pmatrix} -5+7\lambda\\4\lambda\\5-5\lambda \end{pmatrix}$
 $\overrightarrow{BE} \cdot \overrightarrow{AC} = 0$ gives $7(-5+7\lambda) + 4(4\lambda) - 5(5-5\lambda) = 0$
so that $90\lambda = 60$ and $\lambda = 2/3$
Hence $\overrightarrow{BE} = \begin{pmatrix} -1/3\\8/3\\5/3 \end{pmatrix}$

Then
$$\overrightarrow{OD} = \overrightarrow{OB} + 2\overrightarrow{BE} = \begin{pmatrix} 4 - 2/3 \\ \frac{4}{3} + 16/3 \\ 2 + 10/3 \end{pmatrix} = \begin{pmatrix} 10/3 \\ 20/3 \\ 16/3 \end{pmatrix} = 2/3 \begin{pmatrix} 5 \\ 10 \\ 18 \end{pmatrix}$$