Vectors Q24 (3/7/23)

In the diagram below, ABCD is a kite. Find $\overrightarrow{O D}$ if $\overrightarrow{O A}=\left(\begin{array}{c}-1 \\ 4 / 3 \\ 7\end{array}\right)$,
$\overrightarrow{O B}=\left(\begin{array}{c}4 \\ 4 / 3 \\ 2\end{array}\right)$ \& $\overrightarrow{O C}=\left(\begin{array}{c}6 \\ 16 / 3 \\ 2\end{array}\right)$

[from AEA, June 2009]

Solution

We need to take account of the special features of this case, namely that AC is perpendicular to $\mathrm{BD}\left(^{*}\right)$ and bisects $\mathrm{BD}\left({ }^{* *}\right)$ (which enables D to be uniquely determined from $A, B \& C$).

We can take an alternative route to D , in order to involve the other points, writing:
$\overrightarrow{O D}=\overrightarrow{O B}+2 \overrightarrow{B E} \quad\left[\right.$ this takes account of $\left.\left({ }^{* *}\right)\right]$
To record the fact that E lies on AC , we write $\overrightarrow{B E}=\overrightarrow{B A}+\lambda \overrightarrow{A C}$ We also need to take account of (*): $\overrightarrow{B E} \cdot \overrightarrow{A C}=0$
Now $\overrightarrow{B A}=\left(\begin{array}{c}-5 \\ 0 \\ 5\end{array}\right)$ and $\overrightarrow{A C}=\left(\begin{array}{c}7 \\ 4 \\ -5\end{array}\right)$, so that $\overrightarrow{B E}=\left(\begin{array}{c}-5+7 \lambda \\ 4 \lambda \\ 5-5 \lambda\end{array}\right)$
$\overrightarrow{B E} \cdot \overrightarrow{A C}=0$ gives $7(-5+7 \lambda)+4(4 \lambda)-5(5-5 \lambda)=0$
so that $90 \lambda=60$ and $\lambda=2 / 3$
Hence $\overrightarrow{B E}=\left(\begin{array}{c}-1 / 3 \\ 8 / 3 \\ 5 / 3\end{array}\right)$
Then $\overrightarrow{O D}=\overrightarrow{O B}+2 \overrightarrow{B E}=\left(\begin{array}{c}4-2 / 3 \\ \frac{4}{3}+16 / 3 \\ 2+10 / 3\end{array}\right)=\left(\begin{array}{l}10 / 3 \\ 20 / 3 \\ 16 / 3\end{array}\right)=2 / 3\left(\begin{array}{c}5 \\ 10 \\ 18\end{array}\right)$

