Given the plane П: $3 x+2 y-z=6$ and the line
$L: \underline{r}=\left(\begin{array}{l}1 \\ 0 \\ 3\end{array}\right)+\lambda\left(\begin{array}{c}2 \\ -1 \\ 1\end{array}\right)$, let L' be the projection of L onto Π

(i) Find the point of intersection (P) of $\Pi \& L$
(ii) Find the angle between $\Pi \& L$
(iii) Find a vector that is parallel to Π and perpendicular to L
(iv) Find a vector equation for L^{\prime}
(v) Find the angle between L and L'

Solution
(i) $3(1+2 \lambda)+2(-\lambda)-(3+\lambda)=6$
$\Rightarrow 3 \lambda=6 \Rightarrow \lambda=2$
So P is $\left(\begin{array}{c}1+4 \\ -2 \\ 3+2\end{array}\right)=\left(\begin{array}{c}5 \\ -2 \\ 5\end{array}\right)$
(ii) The angle between $\Pi \& \mathrm{~L}$ is the angle between L and its projection onto the plane (ie the angle between L and L '), but is most easily determined by first finding the angle between L and the normal to the plane, and subtracting this from $\frac{\pi}{2}$

If θ is the angle between L and the normal to the plane, then
$\cos \theta=\frac{\left(\begin{array}{c}2 \\ -1 \\ 1\end{array}\right) \cdot\left(\begin{array}{c}3 \\ 2 \\ -1\end{array}\right)}{\sqrt{4+1+1} \sqrt{9+4+1}}=\frac{6-2-1}{\sqrt{6} \sqrt{14}}=\frac{3}{2 \sqrt{21}}=\frac{3 \sqrt{21}}{2(21)}=\frac{\sqrt{21}}{14}$
The required angle is then $\arcsin \left(\frac{\sqrt{21}}{14}\right)=19.107^{\circ}=19.1^{\circ}(1 \mathrm{dp})$
(iii) [Note that "parallel to the plane" means parallel to a vector in the plane, and therefore perpendicular to the normal to the plane. The required vector is also perpendicular to the plane containing L and L .]

As the required vector is perpendicular to both the normal to the plane and L, we can use the vector product:
$\left(\begin{array}{c}3 \\ 2 \\ -1\end{array}\right) \times\left(\begin{array}{c}2 \\ -1 \\ 1\end{array}\right)=\left|\begin{array}{ccc}\underline{j} & 3 & 2 \\ \underline{j} & 2 & -1 \\ \underline{k} & -1 & 1\end{array}\right|=\underline{i}-5 \underline{j}-7 \underline{k}$
[A useful check is that the scalar product with the original vectors is zero. Thus $3(1)+2(-5)+(-1)(-7)=0]$
(iv) L' passes through P and its direction is perpendicular to both $\underline{i}-5 \underline{j}-7 \underline{k}($ from (iii)) and the normal to the plane.

So its direction vector is
$\left(\begin{array}{c}1 \\ -5 \\ -7\end{array}\right) \times\left(\begin{array}{c}3 \\ 2 \\ -1\end{array}\right)=\left|\begin{array}{ccc}\underline{i} & 1 & 3 \\ \underline{j} & -5 & 2 \\ \underline{k} & -7 & -1\end{array}\right|=19 \underline{i}-20 \underline{j}+17 \underline{k}$
So a vector equation of L' is: $\underline{r}=\left(\begin{array}{c}5 \\ -2 \\ 5\end{array}\right)+\lambda\left(\begin{array}{c}19 \\ -20 \\ 17\end{array}\right)$, from (i).
(v) If the required angle is ϕ, then
$\cos \phi=\frac{\left(\begin{array}{c}2 \\ -1 \\ 1\end{array}\right) \cdot\left(\begin{array}{c}19 \\ -20 \\ 17\end{array}\right)}{\sqrt{4+1+1} \sqrt{361+400+289}}=\frac{38+20+17}{\sqrt{6} \sqrt{1050}}$
$=\frac{75}{2 \sqrt{3} \sqrt{525}}=\frac{75}{2 \sqrt{3}(5) \sqrt{21}}=\frac{15}{2(3) \sqrt{7}}=\frac{5 \sqrt{7}}{14}$
and hence $\phi=\arccos \left(\frac{5 \sqrt{7}}{14}\right)=19.107^{\circ}=19.1^{\circ}(1 \mathrm{dp})($ as in (ii))

