Vectors Q20 (3/7/23)

Find the reflection of the line $\frac{x-2}{3}=\frac{y+4}{1} ; z=3$ in the plane $y=4$

Let P be $\left(\begin{array}{c}2 \\ -4 \\ 3\end{array}\right)$, say.
Q is intersection of the line and plane :
Line is $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}2 \\ -4 \\ 3\end{array}\right)+\lambda\left(\begin{array}{l}3 \\ 1 \\ 0\end{array}\right)$
Substituting into the eq'n of the plane: $-4+\lambda=4 \Rightarrow \lambda=8$
So Q is $\left(\begin{array}{c}2 \\ -4 \\ 3\end{array}\right)+8\left(\begin{array}{l}3 \\ 1 \\ 0\end{array}\right)=\left(\begin{array}{c}26 \\ 4 \\ 3\end{array}\right)$
Line PR is $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}2 \\ -4 \\ 3\end{array}\right)+\mu\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$
R is intersection of PR and the plane:
$-4+\mu=4 \Rightarrow \mu=8$
So P^{\prime} is $\left(\begin{array}{c}2 \\ -4 \\ 3\end{array}\right)+2(8)\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)=\left(\begin{array}{c}2 \\ 12 \\ 3\end{array}\right)$

$$
\begin{aligned}
& \text { Eq'n of P'Q is }\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
2 \\
12 \\
3
\end{array}\right)+\theta\left[\left(\begin{array}{c}
26 \\
4 \\
3
\end{array}\right)-\left(\begin{array}{c}
2 \\
12 \\
3
\end{array}\right)\right] \\
& \text { ie }\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
2 \\
12 \\
3
\end{array}\right)+\theta\left(\begin{array}{c}
24 \\
-8 \\
0
\end{array}\right) \text {, or }\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
2 \\
12 \\
3
\end{array}\right)+\theta^{\prime}\left(\begin{array}{c}
3 \\
-1 \\
0
\end{array}\right) \\
& \text { or } \frac{x-2}{3}=\frac{y-12}{-1} ; z=3
\end{aligned}
$$

