Vectors Q1 (3/7/23)
(i) Show that the line $\underline{r}=\underline{a}+t \underline{b}$ and the plane $\underline{r} \cdot \underline{n}=d$ intersect at the point $\underline{r}=\underline{a}+\left(\frac{d-\underline{a} \cdot \underline{n}}{\underline{b} \cdot \underline{n}}\right) \underline{b}$
(ii) Find the intersection of the line $\underline{r}=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)+t\left(\begin{array}{l}1 \\ 2 \\ 0\end{array}\right)$ and the plane $\underline{r} \cdot\left(\begin{array}{c}1 \\ -1 \\ 0\end{array}\right)=-2$
(iii) Find the angle between the line and the plane in (ii).

Solution
(i) $(\underline{a}+t \underline{b}) \cdot \underline{n}=d \Rightarrow \underline{a} \cdot \underline{n}+t \underline{b} \cdot \underline{n}=d$
$\Rightarrow t=\frac{d-\underline{a} \cdot \underline{n}}{\underline{b} \underline{n}}$
$\Rightarrow \underline{r}=\underline{a}+\left(\frac{d-\underline{a} \cdot \underline{n}}{\underline{b} \underline{n}}\right) \underline{b}$
(ii) Applying the result in (i):
$\underline{a} \cdot \underline{n}=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right) \cdot\left(\begin{array}{c}1 \\ -1 \\ 0\end{array}\right)=-1$
and $\underline{b} \cdot \underline{n}=\left(\begin{array}{l}1 \\ 2 \\ 0\end{array}\right) \cdot\left(\begin{array}{c}1 \\ -1 \\ 0\end{array}\right)=-1$
so that $\underline{r}=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)+\left(\frac{-2-[-1]}{-1}\right)\left(\begin{array}{l}1 \\ 2 \\ 0\end{array}\right)=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)+\left(\begin{array}{l}1 \\ 2 \\ 0\end{array}\right)=\left(\begin{array}{l}1 \\ 3 \\ 0\end{array}\right)$
(iii) $\left(\begin{array}{l}1 \\ 2 \\ 0\end{array}\right) \cdot\left(\begin{array}{c}1 \\ -1 \\ 0\end{array}\right)=\sqrt{1+4+0} \cdot \sqrt{1+1+0} \cos \theta$
$\Rightarrow \cos \theta=\frac{1-2+0}{\sqrt{5} \cdot \sqrt{2}}=-\frac{1}{\sqrt{10}}$
$\Rightarrow \theta=108.43495^{\circ}$
The required angle is:
$90-(180-108.43495)=18.43495=18.4^{\circ}(1 \mathrm{dp})$

