Vectors Q18 (3/7/23)

Find the distance between the lines $\frac{x+1}{1}=\frac{y+2}{2} ; z=4$ and $\frac{x+3}{1}=\frac{y-6}{2} ; z=7$, leaving your answer in exact form.

Solution

Method 1

The lines are parallel.
Choose a point on one of the lines; eg $P=(-3,6,7)$ on the 2nd line.

To find the distance of this point from the 1st line:
A general point, Q on the 1 st line is $\left(\begin{array}{l}x \\ y \\ x\end{array}\right)=\left(\begin{array}{c}-1+\lambda \\ -2+2 \lambda \\ 4\end{array}\right)$
Then $\overrightarrow{P Q}=\left(\begin{array}{c}-1+\lambda \\ -2+2 \lambda \\ 4\end{array}\right)-\left(\begin{array}{c}-3 \\ 6 \\ 7\end{array}\right)=\left(\begin{array}{c}2+\lambda \\ -8+2 \lambda \\ -3\end{array}\right)$
We want $\overrightarrow{P Q}$ to be perpendicular to the 1 st line,
so that $\left(\begin{array}{c}2+\lambda \\ -8+2 \lambda \\ -3\end{array}\right) \cdot\left(\begin{array}{l}1 \\ 2 \\ 0\end{array}\right)=0$
$\Rightarrow 2+\lambda-16+4 \lambda=0 \Rightarrow 5 \lambda=14 ; \lambda=\frac{14}{5}$
Then $\overrightarrow{P Q}=\left(\begin{array}{c}\frac{24}{5} \\ -\frac{12}{5} \\ -\frac{15}{5}\end{array}\right)=\frac{3}{5}\left(\begin{array}{c}8 \\ -4 \\ -5\end{array}\right)$ and the required distance is
$\frac{3}{5} \sqrt{64+16+25}$
$=\frac{3 \sqrt{105}}{5}$

Method 2

Choose a point on each line; eg $R=(-1,-2,4)$ on the 1 st line, and $P=(-3,6,7)$ on the $2 n d$ line.

Then $\overrightarrow{P R}=\left(\begin{array}{c}2 \\ -8 \\ -3\end{array}\right)$ and the required distance is $\left|\frac{\left(\begin{array}{c}2 \\ -8 \\ -3\end{array}\right) \times\left(\begin{array}{l}1 \\ 2 \\ 0\end{array}\right)}{\left|\left(\begin{array}{l}1 \\ 2 \\ 0\end{array}\right)\right|}\right|$
$=\left|\frac{\left|\begin{array}{ccc}\frac{i}{j} & 2 & 1 \\ j & -8 & 2 \\ \underline{k} & -3 & 0\end{array}\right|}{\sqrt{5}}\right|=\frac{1}{\sqrt{5}}\left|\left(\begin{array}{c}6 \\ -3 \\ 12\end{array}\right)\right|=\frac{3}{\sqrt{5}}\left|\left(\begin{array}{c}2 \\ -1 \\ 4\end{array}\right)\right|=\frac{3}{\sqrt{5}} \sqrt{21}=\frac{3 \sqrt{105}}{5}$

