Vectors Q15 (3/7/23)

(i) Find a vector that is perpendicular to both $\left(\begin{array}{c}7 \\ 0 \\ -10\end{array}\right) \&\left(\begin{array}{c}1 \\ 3 \\ -1\end{array}\right)$
(ii) Use (i) to find the plane that passes through the points with position vectors $\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right),\left(\begin{array}{c}8 \\ 2 \\ -7\end{array}\right) \&\left(\begin{array}{c}0 \\ -1 \\ 4\end{array}\right)$

Solution
(i) Method 1
$\left(\begin{array}{c}7 \\ 0 \\ -10\end{array}\right) \times\left(\begin{array}{c}1 \\ 3 \\ -1\end{array}\right)=\left|\begin{array}{ccc}\underline{i} & 7 & 1 \\ \bar{j} & 0 & 3 \\ \underline{k} & -10 & -1\end{array}\right|=\left(\begin{array}{c}30 \\ -3 \\ 21\end{array}\right)$
[From the theory of the vector product,] this is perpendicular to the given vectors (as is $\frac{1}{3}\left(\begin{array}{c}30 \\ -3 \\ 21\end{array}\right)=\left(\begin{array}{c}10 \\ -1 \\ 7\end{array}\right)$.

Method 2
Let the required vector be $\left(\begin{array}{l}1 \\ a \\ b\end{array}\right)$
Then $\left(\begin{array}{c}7 \\ 0 \\ -10\end{array}\right) \cdot\left(\begin{array}{l}1 \\ a \\ b\end{array}\right)=0$, so that $7-10 b=0 \& b=\frac{7}{10}$
And $\left(\begin{array}{c}1 \\ 3 \\ -1\end{array}\right) \cdot\left(\begin{array}{l}1 \\ a \\ b\end{array}\right)=0$, so that $1+3 a-b=0$,
and $a=\frac{1}{3}\left(\frac{7}{10}-1\right)=-\frac{1}{10}$
Thus (multiplying by 10) a suitable vector is $\left(\begin{array}{c}10 \\ -1 \\ 7\end{array}\right)$.
(ii) Let $\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right),\left(\begin{array}{c}8 \\ 2 \\ -7\end{array}\right) \&\left(\begin{array}{c}0 \\ -1 \\ 4\end{array}\right)$ represent the points $A, B \& C$, respectively.

Then $\overrightarrow{A B}=\left(\begin{array}{c}7 \\ 0 \\ -10\end{array}\right) \& \overrightarrow{A C}=\left(\begin{array}{c}-1 \\ -3 \\ 1\end{array}\right)=-\left(\begin{array}{c}1 \\ 3 \\ -1\end{array}\right)$

From (i), a vector that is perpendicular to $\overrightarrow{A B} \& \overrightarrow{A C}$ (and therefore a normal to the plane) is $\left(\begin{array}{c}10 \\ -1 \\ 7\end{array}\right)$.

So the equation of the plane is
$\underline{r} \cdot\left(\begin{array}{c}10 \\ -1 \\ 7\end{array}\right)=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right) \cdot\left(\begin{array}{c}10 \\ -1 \\ 7\end{array}\right)=10-2+21=29$
or (in cartesian form) $10 x-y+7 z=29\left[\operatorname{as} \underline{r} \equiv\left(\begin{array}{l}x \\ y \\ z\end{array}\right)\right]$

