Vectors Q14 (3/7/23)

Find the volume of the tetrahedron with corners
$(2,1,3),(-1,5,0),(4,4,7),(8,2,2)$

Solution

Method 1

Label the corners as follows:
$A(2,1,3), B(-1,5,0), C(4,4,7), D(8,2,2)$
Then volume $=\frac{1}{3} \cdot \frac{1}{2}|\overrightarrow{A B} \cdot(\overrightarrow{A C} \times \overrightarrow{A D})|$
(based on $\frac{1}{3} \times$ area of triangle $\mathrm{ABC} \times$ perpendicular height)
and $\overrightarrow{A B} \cdot(\overrightarrow{A C} \times \overrightarrow{A D})=\left|\begin{array}{ccc}-3 & 2 & 6 \\ 4 & 3 & 1 \\ -3 & 4 & -1\end{array}\right|$
$=-3(-7)-4(-26)-3(-16)=21+104+48=173$
So volume is $\frac{173}{6}$ units 3.

Method 2a (much longer, but good practice!)
Volume $=\frac{1}{3} \times$ area of base $\mathrm{ABC} \times$ perpendicular height Area of base $\mathrm{ABC}=\frac{1}{2}|\overrightarrow{A B} \times \overrightarrow{A C}|$
and $\overrightarrow{A B} \times \overrightarrow{A C}=\left|\begin{array}{ccc}\underline{i} & -3 & 2 \\ \underline{j} & 4 & 3 \\ \underline{k} & -3 & 4\end{array}\right|=\left(\begin{array}{c}25 \\ 6 \\ -17\end{array}\right)$,
so that Area of base $\mathrm{ABC}=\frac{1}{2} \sqrt{25^{2}+6^{2}+(-17)^{2}}=\frac{5}{2} \sqrt{38}$
The perpendicular height is the shortest distance from D to the plane ABC.

A normal to the plane ABC is $\overrightarrow{A B} \times \overrightarrow{A C}=\left(\begin{array}{c}25 \\ 6 \\ -17\end{array}\right)$ (already calculated).

And the equation of the plane ABC is
$\underline{r} \cdot\left(\begin{array}{c}25 \\ 6 \\ -17\end{array}\right)=\left(\begin{array}{l}2 \\ 1 \\ 3\end{array}\right) \cdot\left(\begin{array}{c}25 \\ 6 \\ -17\end{array}\right)=50+6-51=5$,
taking $\overrightarrow{O A}=\left(\begin{array}{l}2 \\ 1 \\ 3\end{array}\right)$ as a point in the plane.
Let the point of intersection of the perpendicular from D onto the plane ABC be P , given by the following point on the perpendicular:

$$
\left(\begin{array}{l}
8 \\
2 \\
2
\end{array}\right)+\lambda\left(\begin{array}{c}
25 \\
6 \\
-17
\end{array}\right)
$$

As P lies in the plane ABC,
$\left(\left(\begin{array}{l}8 \\ 2 \\ 2\end{array}\right)+\lambda\left(\begin{array}{c}25 \\ 6 \\ -17\end{array}\right)\right) \cdot\left(\begin{array}{c}25 \\ 6 \\ -17\end{array}\right)=5$
Then $178+950 \lambda=5$, so that $\lambda=-\frac{173}{950}$
and the perpendicular height is $|\lambda|\left|\begin{array}{c}25 \\ 6 \\ -17\end{array}\right|$
$=\frac{173}{950} \sqrt{25^{2}+6^{2}+(-17)^{2}}=\frac{173}{950} \cdot 5 \sqrt{38}=\frac{173}{190} \sqrt{38}$
Hence the volume of the tetrahedron is
$\frac{1}{3} \cdot \frac{5}{2} \sqrt{38} \cdot \frac{173}{190} \sqrt{38}=\frac{173}{6}$ units 3

Method 2b (even longer)
As Method 2a, but determining λ as follows:
For P to be a point in the plane ABC ,

$$
\left(\begin{array}{l}
8 \\
2 \\
2
\end{array}\right)+\lambda\left(\begin{array}{c}
25 \\
6 \\
-17
\end{array}\right)=\left(\begin{array}{l}
2 \\
1 \\
3
\end{array}\right)+\mu\left(\begin{array}{c}
-3 \\
4 \\
-3
\end{array}\right)+\theta\left(\begin{array}{l}
2 \\
3 \\
4
\end{array}\right),
$$

as $\overrightarrow{O A}=\left(\begin{array}{l}2 \\ 1 \\ 3\end{array}\right)$ is a point in the plane, and $\overrightarrow{A B}=\left(\begin{array}{c}-3 \\ 4 \\ -3\end{array}\right)$ and
$\overrightarrow{A C}=\left(\begin{array}{l}2 \\ 3 \\ 4\end{array}\right)$ are directions parallel to the plane
Then $\left(\begin{array}{ccc}25 & 3 & -2 \\ 6 & -4 & -3 \\ -17 & 3 & -4\end{array}\right)\left(\begin{array}{l}\lambda \\ \mu \\ \theta\end{array}\right)=\left(\begin{array}{c}-6 \\ -1 \\ 1\end{array}\right)$
$\left|\begin{array}{ccc}25 & 3 & -2 \\ 6 & -4 & -3 \\ -17 & 3 & -4\end{array}\right|=25(25)-6(-6)-17(-17)=950$
$\left(\begin{array}{ccc}25 & 3 & -2 \\ 6 & -4 & -3 \\ -17 & 3 & -4\end{array}\right)^{-1}=\frac{1}{950}\left(\begin{array}{ccc}25 & 75 & -50 \\ 6 & -134 & -126 \\ -17 & 63 & -118\end{array}\right)^{T}$

So $\left(\begin{array}{l}\lambda \\ \mu \\ \theta\end{array}\right)=\frac{1}{950}\left(\begin{array}{ccc}25 & 6 & -17 \\ 75 & -134 & 63 \\ -50 & -126 & -118\end{array}\right)\left(\begin{array}{c}-6 \\ -1 \\ 1\end{array}\right)$
$=\frac{1}{950}\left(\begin{array}{c}-173 \\ -253 \\ 308\end{array}\right)$,
so that $\lambda=-\frac{173}{950}$

