Vectors Q13 (3/7/23)

(i) Given that the shortest distance from the point \underline{p} to the plane $\underline{r} \cdot \underline{n}=d$ is $\frac{|d-\underline{p} \underline{n}|}{|\underline{n}|}$, what is the significance of $\frac{d}{|\underline{n}|}$ if $d>0$?
(ii) Find the equation of the plane that is parallel to $\underline{r} \cdot \underline{n}=d$ and contains the point \underline{p}.
(iii) Hence deduce the formula for the shortest distance from the point \underline{p} to the plane $\underline{r} \cdot \underline{n}=d$

Solution
(i) $\frac{d}{|\underline{n}|}$ is the distance of the plane $\underline{r} \cdot \underline{n}=d$ from the Origin, when $d>0$
(ii) $\underline{r} \cdot \underline{n}=\underline{p} \cdot \underline{n}$
(iii) The shortest distance from the plane $\underline{r} \cdot \underline{n}=d$ to the Origin is $\frac{d}{|n|}$.
The plane parallel to $\underline{r} \cdot \underline{n}=d$, containing \underline{p} has equation $\underline{r} \cdot \underline{n}=\underline{p} \cdot \underline{n}$, and its shortest distance from the Origin is $\frac{\underline{p} \cdot \underline{n}}{|\underline{n}|}$ Hence the shortest distance from the point \underline{p} to the plane $\underline{r} \cdot \underline{n}=d$ is $\left|\frac{\underline{\underline{p}} \underline{\underline{n}}}{|\underline{n}|}-\frac{d}{|\underline{n}|}\right|=\frac{|d-\underline{p} \cdot \underline{n}|}{|\underline{n}|}$

