Vectors Q12 (3/7/23)
(i) Find the intersection of the line $\underline{r}=\left(\begin{array}{c}2 \\ -1 \\ 5\end{array}\right)+\lambda\left(\begin{array}{l}3 \\ 1 \\ 4\end{array}\right)$ and the plane $3 x+y+4 z=77$
(ii) Find the shortest distance from the point $\left(\begin{array}{c}2 \\ -1 \\ 5\end{array}\right)$ to the plane
$3 x+y+4 z=77$

Solution
(i) For a point on the line, $x=2+3 \lambda, y=-1+\lambda, z=5+4 \lambda$

Substituting into the eq' n of the plane:
$3(2+3 \lambda)+(-1+\lambda)+4(5+4 \lambda)=77$
$\Rightarrow 26 \lambda=77-25 \Rightarrow \lambda=\frac{52}{26}=2$
\Rightarrow point of intersection has position vector $\left(\begin{array}{c}2 \\ -1 \\ 5\end{array}\right)+2\left(\begin{array}{l}3 \\ 1 \\ 4\end{array}\right)$
$=\left(\begin{array}{c}8 \\ 1 \\ 13\end{array}\right)$
(ii) From (i), nearest point on the plane is $\left(\begin{array}{c}8 \\ 1 \\ 13\end{array}\right)$,
so that shortest distance is $\sqrt{(8-2)^{2}+(1-[-1])^{2}+(13-5)^{2}}$
$=\sqrt{36+4+64}=\sqrt{104}=2 \sqrt{26}$

Alternative method

From (i), shortest distance is $|\lambda||\underline{n}|$, where λ corresponds to the point of intersection of the line and plane, and \underline{n} is the normal vector for the plane; ie $2 \sqrt{3^{2}+1^{2}+4^{2}}=2 \sqrt{26}$

