Vectors Q10 (3/7/23)

(i)(a) Find the acute angle between the line $\frac{x}{2}=\frac{y+1}{-3}=\frac{z-2}{1}$ and the plane $x+y-2 z=5$
(b) Show that the same angle is obtained if the line is written in the form
$\frac{x}{-2}=\frac{y+1}{3}=\frac{z-2}{-1}$ (ie without rearranging into the form in (a))
(ii)(a) Find the acute angle between the planes $x+4 y-3 z=7$
and $x-y+4 z=2$
(b) Find the acute angle between the planes $x+4 y-3 z=7$ and $-x+y-4 z=2$ (again, without rearranging the equation)

Solution

(i)(a) The angle between the line and the normal to the plane is given by
$\left(\begin{array}{c}2 \\ -3 \\ 1\end{array}\right) \cdot\left(\begin{array}{c}1 \\ 1 \\ -2\end{array}\right)=\sqrt{14} \sqrt{6} \cos \theta$, so that $\cos \theta=\frac{-3}{\sqrt{14} \sqrt{6}}=-0.32733$ and $\theta=109.107^{\circ}$

The acute angle between these vectors is then $180-109.107=$ 70.893°

The acute angle between the line and plane is then
$90-70.893=19.1^{\circ}(1 \mathrm{dp})$
(b) $\left(\begin{array}{c}-2 \\ 3 \\ -1\end{array}\right) \cdot\left(\begin{array}{c}1 \\ 1 \\ -2\end{array}\right)=\sqrt{14} \sqrt{6} \cos \theta \Rightarrow \cos \theta=\frac{3}{\sqrt{14} \sqrt{6}}=0.32733$
and $\theta=70.893^{\circ}$

As we have already found the acute angle between the line and the normal, the acute angle between the line and the plane is $90-70.893=19.1^{\circ}(1 \mathrm{dp})$
(ii) The angle between the normals to the planes is given by
$\left(\begin{array}{c}1 \\ 4 \\ -3\end{array}\right) \cdot\left(\begin{array}{c}1 \\ -1 \\ 4\end{array}\right)=\sqrt{26} \sqrt{18} \cos \theta$, so that $\cos \theta=\frac{-15}{\sqrt{26} \sqrt{18}}=-0.69338$
and $\theta=133.898^{\circ}$

The acute angle between the planes themselves is 180 $133.898=46.1^{\circ}$
(ii)(b) The angle between the normals to the planes is given by
$\left(\begin{array}{c}1 \\ 4 \\ -3\end{array}\right) \cdot\left(\begin{array}{c}-1 \\ 1 \\ -4\end{array}\right)=\sqrt{26} \sqrt{18} \cos \theta$, so that $\cos \theta=\frac{15}{\sqrt{26} \sqrt{18}}=0.69338$
and $\theta=46.1^{\circ}$
The acute angle between the planes is also 46.1°.

