Vectors Exercises - Part 1 (4 pages; 3/2/20)

Key to difficulty:

* easier

** moderate

*** harder

(1*) Vector equation of line

Given that the line $\underline{r} = \begin{pmatrix} 2 \\ 3 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -2 \end{pmatrix}$ can also be written as

$$\binom{0}{7} + \mu \binom{-1}{2}$$
 , find μ in terms of λ

(2*) Vector equation of line

Find a vector equation of the line that passes through the point (1,2) and is perpendicular to the line $\underline{r} = \begin{pmatrix} 3 \\ 4 \end{pmatrix} + \lambda \begin{pmatrix} 4 \\ -1 \end{pmatrix}$

(3**) Scalar product

Show that if $|\underline{a} - \underline{b}| = |\underline{a} + \underline{b}|$, then $\underline{a} \& \underline{b}$ are perpendicular.

(4**) Planes

Find the cartesian form of the plane

$$\underline{r} = \begin{pmatrix} 0 \\ -2 \\ -1 \end{pmatrix} + s \begin{pmatrix} 1 \\ 4 \\ 4 \end{pmatrix} + t \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}$$

(5***) Lines and planes

Find the line that is the reflection of the line $\frac{x-2}{3} = \frac{y}{4} = \frac{z+1}{1}$ in the plane x - 2y + z = 4

(6**) Lines and planes

- (i)(a) Find the acute angle between the line $\frac{x}{2} = \frac{y+1}{-3} = \frac{z-2}{1}$ and the plane x + y 2z = 5
- (b) Show that the same angle is obtained if the line is written in the form

$$\frac{x}{-2} = \frac{y+1}{3} = \frac{z-2}{-1}$$
 (ie without rearranging into the form in (a))

(ii)(a) Find the acute angle between the planes x + 4y - 3z = 7 and

$$x - y + 4z = 2$$

(b) Find the acute angle between the planes x + 4y - 3z = 7 and -x + y - 4z = 2 (again, without rearranging the equation)

(7***) Lines and planes

Find the line that is the reflection of the line $\frac{x-2}{3} = \frac{y}{4} = \frac{z+1}{1}$ in the plane x - 2y + z = 4

(8***) Lines

Find the distance between the lines $\frac{x+1}{1} = \frac{y+2}{2}$; z = 4 and $\frac{x+3}{1} = \frac{y-6}{2}$; z = 7, leaving your answer in exact form.

(9***) Lines

(i) Show the lines
$$\frac{x-1}{2} = \frac{y+3}{5} = \frac{z-2}{3}$$
 and $\frac{x}{1} = \frac{y-4}{2} = \frac{z+1}{2}$ are skew.

(ii) Find the shortest distance between the lines and identify the points on the lines at which this shortest distance occurs.

(10**) Lines

Given that
$$A = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
, $B = \begin{pmatrix} -4 \\ 3 \\ 1 \end{pmatrix}$, $C = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}$, $D = \begin{pmatrix} p \\ 4 \\ -4 \end{pmatrix}$

- (i) Write down the equations of the lines AB and CD (both extended)
- (ii) Find $\overrightarrow{AB} \times \overrightarrow{CD}$
- (iii) For what value of p are the lines AB and CD parallel? (2 methods)

(11**) Planes

Find the plane containing the points (2,-1,4), (-3,4,2) and (1,0,5), in Cartesian form

(12***) Lines and planes

Find the reflection of the line $\frac{x-2}{3} = \frac{y+4}{1}$; z = 3 in the plane y = 4

(13***) Problem

Use vectors to prove that the mid-points of the sides of any quadrilateral form the vertices of a parallelogram.