(1) [AEA, June 2009, Q7(d)]

In the diagram below, ABCD is a kite. Find \overrightarrow{OD} if $\overrightarrow{OA} = \begin{pmatrix} -1 \\ 4/3 \\ 7 \end{pmatrix}$,

$$\overrightarrow{OB} = \begin{pmatrix} 4\\4/3\\2 \end{pmatrix} \& \overrightarrow{OC} = \begin{pmatrix} 6\\16/3\\2 \end{pmatrix}$$

(2) Prove that the centre of mass of a triangular lamina lies 2/3 of the way along any of the medians.

(3) Given that the centre of mass of a triangular lamina lies 2/3 of the way along any of the medians, prove that it has position vector $\frac{1}{3}(\underline{a} + \underline{b} + \underline{c})$.

- (4) Show that if $|\underline{a} \underline{b}| = |\underline{a} + \underline{b}|$, then $\underline{a} \& \underline{b}$ are perpendicular.
- (5) Use vectors to prove that the mid-points of the sides of any quadrilateral form the vertices of a parallelogram.
- (6) Find the angle between adjacent sloping faces of a right square-based pyramid, where the faces are equilateral triangles (as shown in Figure 1).

Figure 1