Useful Results - Statistics (4 pages; 26/4/24)
See also "Probability \& Statistics - Important Ideas"

(1) Variance

(i) Sample variance $s^{2}=\frac{1}{n-1}\left\{\left(\sum x_{i}{ }^{2}\right)-n \bar{x}^{2}\right\}$
[assuming that it is to be used as an unbiased estimate for the population variance]
(ii) $\operatorname{Var}(X)=E\left(X^{2}\right)-[E(X)]^{2}$

(2) Outliers

(i) To determine Q_{1} : take the items to the left of the median (or, if the median is the average of $x_{r} \& x_{r+1}$, take the items up to and including x_{r}), and obtain their median. Similarly for Q_{3}.
[There are other methods, but exam mark schemes usually allow a certain amount of leeway, to cover all sensible methods.]
(ii) An outlier is defined as being less than $Q_{1}-1.5 \times I Q R$ or greater than $Q_{3}+1.5 \times I Q R$.
[An outlier is also sometimes defined as being more than 2 standard deviations from the mean.]

(3) Distributions

Discrete	
Uniform: $X \sim \text { discrete } U(a, b)$	(i) $P(X=r)=\frac{1}{b-a+1}$ (ii) $E(X)=\frac{1}{2}(n+1)$ (iii) $\operatorname{Var}(X)=\frac{1}{12}\left(n^{2}-1\right)$
Binomial: $X \sim B(n, p)$	pgf $G_{X}(s)=(q+p s)^{n}$
Geometric: $X \sim G e o(p)$ [X is no. of attempts needed for 1st success]	(i) $P(X=r)=q^{r-1} p$ (ii) $P(X \leq k)=1-q^{k}$ (iii) $E(X)=\frac{1}{p}$ (iv) $\operatorname{Var}(X)=\frac{q}{p^{2}}$ (v) $\operatorname{pgf} G_{X}(s)=\frac{p s}{1-q s}$
Negative Binomial [X is no. of attempts needed for n successes] [Becomes Geometric when $n=1$]	(i) prob. of nth success on r th attempt: $\begin{aligned} & \binom{r-1}{n-1} p^{n-1} q^{(r-1)-(n-1)} p \\ & =\binom{r-1}{n-1} p^{n} q^{k-n} \end{aligned}$ (ii) $E(X)=\frac{n}{p}$ (iii) $\operatorname{Var}(X)=\frac{n q}{p^{2}}$ (iv) $\operatorname{pgf} G_{X}(s)=\left(\frac{p s}{1-q s}\right)^{n}$
Poisson: $X \sim P o(\lambda)$	(i) $p_{k}=\frac{e^{-\lambda} \lambda^{k}}{k!}$ (ii) $\operatorname{pgf} G_{X}(s)=e^{\lambda(s-1)}$
Continuous	
Uniform	(i) $f(x)=\frac{1}{b-a}$ (ii) $E(X)=\frac{1}{2}(a+b)$ (iii) $\operatorname{Var}(X)=\frac{1}{12}(b-a)^{2}$
Normal: $X \sim N\left(\mu, \sigma^{2}\right)$	(i) $f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}$
Exponential	(i) $f(x)=\lambda e^{-\lambda x}$ (ii) $E(X)=\frac{1}{\lambda}$

[X is time between Poisson events]
(iii) $\operatorname{Var}(X)=\frac{1}{\lambda^{2}}$
(4) Normal probabilities

sd	prob. (1 tail)
1	16%
1.645	5%
1.96	2.5%
2.326	1%
2.576	0.5%

(5) Correlation \& Regression
(i) $r=\frac{S_{x y}}{\sqrt{S_{x x} S_{y y}}}$
where $S_{x x}=\sum\left(x_{i}-\bar{x}\right)^{2}=\sum x_{i}^{2}-n \bar{x}^{2}\left[\& S_{y y}=\sum\left(y_{i}-\bar{y}\right)^{2}\right.$ etc $]$
and $S_{x y}=\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)=\sum x_{i} y_{i}-n \bar{x} \bar{y}$,
(ii) $r_{s}=1-\frac{6 \sum d_{i}{ }^{2}}{n\left(n^{2}-1\right)}$
(iii) For the Regression line $y=a+b x, b=\frac{s_{x y}}{s_{x x}}$

(6) Probability Generating Functions

If $X_{1}, X_{2}, \ldots \& N$ are independent random variables, where the X_{i} have pgf $G_{X}(s)$, then
(i) $S_{N}=X_{1}+X_{2}+\cdots+X_{n}$ has pgf $G_{S_{N}}(s)=G_{N}\left(G_{X}(s)\right)$
(ii) $E\left(S_{N}\right)=E(N) E(X)$
(iii) $\operatorname{Var}\left(S_{N}\right)=E(N) \operatorname{Var}(X)+\operatorname{Var}(N)[E(X)]^{2}$
(7) de Morgan's Laws
$\mathrm{P}\left[(\mathrm{A} \cup \mathrm{B})^{\prime}\right]=\mathrm{P}\left[\mathrm{A}^{\prime} \cap \mathrm{B}^{\prime}\right]$
$P\left[(A \cap B)^{\prime}\right]=P\left[A^{\prime} \cup B^{\prime}\right]$

