Useful Results - Statistics (4 pages; 26/4/24)

See also "Probability & Statistics - Important Ideas"

(1) Variance

(i) Sample variance $s^2 = \frac{1}{n-1} \{ (\sum x_i^2) - n\overline{x}^2 \}$

[assuming that it is to be used as an unbiased estimate for the population variance]

(ii)
$$Var(X) = E(X^2) - [E(X)]^2$$

(2) Outliers

(i) To determine Q_1 : take the items to the left of the median (or, if the median is the average of $x_r \& x_{r+1}$, take the items up to and including x_r), and obtain their median. Similarly for Q_3 .

[There are other methods, but exam mark schemes usually allow a certain amount of leeway, to cover all sensible methods.]

(ii) An outlier is defined as being less than $Q_1 - 1.5 \times IQR$ or greater than $Q_3 + 1.5 \times IQR$.

[An outlier is also sometimes defined as being more than 2 standard deviations from the mean.]

(3) Distributions

Discrete	
Uniform:	(i) $P(X = r) = \frac{1}{r}$
$X \sim \text{discrete } U(a, b)$	(ii) $F(X) = \frac{1}{2}(n+1)$
	$(11) E(X) = \frac{1}{2}(n+1)$
	(iii) $Var(X) = \frac{1}{12}(n^2 - 1)$
Binomial: $X \sim B(n, p)$	$pgf G_X(s) = (q + ps)^n$
Geometric: $X \sim Geo(p)$	(i) $P(X = r) = q^{r-1}p$
[X is no. of attempts needed	(ii) $P(X \le k) = 1 - q^{\kappa}$
for 1st success]	(iii) $E(X) = \frac{1}{p}$
	(iv) $Var(X) = \frac{q}{p^2}$
	(v) pgf $G_X(s) = \frac{ps}{1-qs}$
Negative Binomial	(i) prob. of <i>n</i> th success on <i>r</i> th
[X is no. of attempts needed	attempt:
for <i>n</i> successes]	$\binom{r-1}{p^{n-1}q^{(r-1)-(n-1)}p}$
[Becomes Geometric when	$(n-1)^{r}$ $(r-1)$
n = 1]	$= \binom{r}{n-1} p^n q^{k-n}$
	(ii) $E(X) = \frac{n}{p}$
	(iii) $Var(X) = \frac{nq}{p^2}$
	(iv) pgf $G_X(s) = \left(\frac{ps}{1-qs}\right)^n$
Poisson: $X \sim Po(\lambda)$	(i) $p_k = \frac{e^{-\lambda}\lambda^k}{1-\lambda}$
	(ii) nof $G_{\nu}(s) = e^{\lambda(s-1)}$
Continuous	$(1) pgr d\chi(3) = c$
Uniform	(i) $f(x) = \frac{1}{b-a}$
	(ii) $E(X) = \frac{1}{2}(a+b)$
	(iii) $Var(X) = \frac{1}{12}(b-a)^2$
Normal: $X \sim N(\mu, \sigma^2)$	(i) $f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$
Exponential	(i) $f(x) = \lambda e^{-\lambda x}$
	(ii) $E(X) = \frac{1}{\lambda}$

fmng.uk

[X is time between Poisson	(iii) $Var(X) = \frac{1}{12}$
events]	λ^2

(4) Normal probabilities

sd	prob. (1 tail)
1	16%
1.645	5%
1.96	2.5%
2.326	1%
2.576	0.5%

(5) Correlation & Regression

(i) $r = \frac{S_{xy}}{\sqrt{S_{xx}S_{yy}}}$

where $S_{xx} = \sum (x_i - \overline{x})^2 = \sum x_i^2 - n\overline{x}^2$ [& $S_{yy} = \sum (y_i - \overline{y})^2$ etc] and $S_{xy} = \sum (x_i - \overline{x})(y_i - \overline{y}) = \sum x_i y_i - n\overline{x}\overline{y}$,

(ii)
$$r_s = 1 - \frac{6\sum d_i^2}{n(n^2 - 1)}$$

(iii) For the Regression line y = a + bx, $b = \frac{S_{xy}}{S_{xx}}$

(6) Probability Generating Functions

If $X_1, X_2, \dots \& N$ are independent random variables, where the X_i have pgf $G_X(s)$, then

(i)
$$S_N = X_1 + X_2 + \dots + X_n$$
 has pgf $G_{S_N}(s) = G_N(G_X(s))$

(ii)
$$E(S_N) = E(N)E(X)$$

(iii) $Var(S_N) = E(N)Var(X) + Var(N)[E(X)]^2$

(7) de Morgan's Laws

 $P[(A \cup B)'] = P[A' \cap B']$ $P[(A \cap B)'] = P[A' \cup B']$