Trigonometry - Important Ideas (STEP) (5 pages; 15/4/21)

(1) Relation between *sin* and *cos*

Referring to the diagram,

 $sin\theta = \frac{b}{c} = cos\phi = cos(90^{\circ} - \theta)$ and $cos\theta = \frac{a}{c} = sin\phi = sin(90^{\circ} - \theta)$

(The 'co' in cosine stands for 'complementary', because θ and $90^{\circ} - \theta$ are described as complementary angles.)

(2) Key Results

(A) Compound Angle formulae

 $sin(\theta + \phi) = sin\theta cos\phi + cos\theta sin\phi$

 $cos(\theta + \phi) = cos\theta cos\phi - sin\theta sin\phi$

(B)
$$sin(\theta \pm 360^\circ) = sin\theta; cos(\theta \pm 360^\circ) = cos\theta$$

 $cos(-\theta) = cos\theta; sin(-\theta) = -sin\theta$
 $sin(180^\circ - \theta) = sin\theta; cos(180^\circ - \theta) = -cos\theta$
 $sin\theta = cos(90^\circ - \theta); cos\theta = sin(90^\circ - \theta)$

(C) Translations

 $sin(\theta + 90^\circ)$ is $sin\theta$ translated 90° to the left, which is $cos\theta$ $sin(\theta - 90^\circ)$ is $sin\theta$ translated 90° to the right, which is $-cos\theta$ $cos(\theta + 90^\circ)$ is $cos\theta$ translated 90° to the left, which is $-sin\theta$ $cos(\theta - 90^\circ)$ is $cos\theta$ translated 90° to the right, which is $sin\theta$

(3) As $sin\theta = sin (180^\circ - \theta)$, we have to be careful when using the Sine rule to determine angles in a triangle that are close to 90°. Instead, either find small angles first, or use the Cosine rule instead.

Example

 $c^{2} = 11^{2} + 8^{2} - 2(11)(8)\cos 30^{\circ}, \text{ giving } c = 5.70785$ Now $\frac{\sin B}{11} = \frac{\sin 30^{\circ}}{5.70785} \Rightarrow \sin B = 0.96359 \Rightarrow B = 74.5^{\circ} \text{ or } 105.5^{\circ}$ But $\frac{\sin A}{8} = \frac{\sin 30^{\circ}}{5.70785} \Rightarrow \sin A = 0.70079$ $\Rightarrow A = 44.5^{\circ} \text{ (not } 180 - 44.5)$ $\Rightarrow B = 180 - 30 - 44.5 = 105.5^{\circ}$ (4) To solve eg $sin(2x - 60^\circ) = 0.5$; $0 \le x \le 360^\circ$:

Let $u = 2x - 60^{\circ}$ and note that $-60^{\circ} \le u \le 660^{\circ}$ Having found the solutions for u (such that $-60^{\circ} \le u \le 660^{\circ}$), the solutions for x are obtained from $x = \frac{1}{2}(u + 60)$.

(5) Starting with
$$\cos^2\theta + \sin^2\theta = 1$$
 (A) and
 $\cos^2\theta - \sin^2\theta = \cos^2\theta$ (B),
 $\frac{1}{2}[(A) + (B)] \Rightarrow \cos^2\theta = \frac{1}{2}(1 + \cos^2\theta)$
and $\frac{1}{2}[(A) - (B)] \Rightarrow \sin^2\theta = \frac{1}{2}(1 - \cos^2\theta)$

(6)(a) In order for $y = \arcsin x$ (or $\sin^{-1}x$) to be a function, the range of the inverse of $y = \sin x$ is restricted to $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

(To avoid vertical duplication for y = arcsinx, we ensure that there is no horizontal duplication for y = sinx.)

Then $sinx = a \Rightarrow$

 $x = \arcsin(a) + n(2\pi)$ or $\pi - \arcsin(a) + n(2\pi)$ for $n \in \mathbb{Z}$

Alternatively, $x = n\pi + (-1)^n \arcsin(a)$

[For even multiples of π , we go forward along the curve, and for odd multiples we go back - see the diagram below.]

(b) In order for $y = \arctan x$ (or $\tan^{-1}x$) to be a function, the range of the inverse of $y = \tan x$ is also restricted to $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ Then $\tan x = a \Rightarrow x = \arctan(a) + n\pi$ for $n \in \mathbb{Z}$

(c) In order for $y = \arccos x$ (or $\cos^{-1} x$) to be a function, the range of the inverse of $y = \cos x$ is restricted to $[0, \frac{\pi}{2}]$

(avoiding horizontal duplication for y = cosx)

Then $cosx = a \Rightarrow$

 $x = \arccos(a) + n(2\pi)$ or $2\pi - \arccos(a) + n(2\pi)$ for $n \in \mathbb{Z}$

[The 2nd option can also be written as $-\arccos(a) + n'(2\pi)$]

Alternatively, $x = 2n\pi \pm \arccos(a)$

(7) Angle Bisector Theorem

Referring to the diagram below, the Angle Bisector theorem says that

$$\frac{BD}{DC} = \frac{AB}{AC}$$

Proof

Method 1

By the Sine rule for triangle ABD, $\frac{BD}{sin\theta} = \frac{AB}{sinADB}$ (1) and, for triangle ADC, $\frac{DC}{sin\theta} = \frac{AC}{sinADC} = \frac{AC}{sinADB}$ (2) Then (1) $\Rightarrow \frac{sin\theta}{sinADB} = \frac{BD}{AB}$ and (2) $\Rightarrow \frac{sin\theta}{sinADB} = \frac{DC}{AC}$ so that $\frac{BD}{AB} = \frac{DC}{AC}$ and hence $\frac{BD}{DC} = \frac{AB}{AC}$

Method 2

Area of triangle ABD ÷ Area of triangle ADC = $\frac{\frac{1}{2}AB.ADsin\theta}{\frac{1}{2}AC.ADsin\theta} = \frac{AB}{AC}$

Also,

Area of triangle ABD ÷ Area of triangle ADC = $\frac{\frac{1}{2}BD.ADsinBDA}{\frac{1}{2}AD.DCsinADC} = \frac{BD}{DC}$, as $\angle BDA = 180 - \angle ADC$, so that sinBDA = sinADCHence, $\frac{AB}{AC} = \frac{BD}{DC}$