(1) Relation between \sin and \cos

Referring to the diagram,
$\sin \theta=\frac{b}{c}=\cos \phi=\cos \left(90^{\circ}-\theta\right)$
and $\cos \theta=\frac{a}{c}=\sin \phi=\sin \left(90^{\circ}-\theta\right)$
(The 'co' in cosine stands for 'complementary', because θ and $90^{\circ}-\theta$ are described as complementary angles.)
(2) Key Results
(A) Compound Angle formulae
$\sin (\theta+\phi)=\sin \theta \cos \phi+\cos \theta \sin \phi$
$\cos (\theta+\phi)=\cos \theta \cos \phi-\sin \theta \sin \phi$
(B) $\sin \left(\theta \pm 360^{\circ}\right)=\sin \theta ; \cos \left(\theta \pm 360^{\circ}\right)=\cos \theta$ $\cos (-\theta)=\cos \theta ; \sin (-\theta)=-\sin \theta$
$\sin \left(180^{\circ}-\theta\right)=\sin \theta ; \cos \left(180^{\circ}-\theta\right)=-\cos \theta$
$\sin \theta=\cos \left(90^{\circ}-\theta\right) ; \cos \theta=\sin \left(90^{\circ}-\theta\right)$

(C) Translations

$\sin \left(\theta+90^{\circ}\right)$ is $\sin \theta$ translated 90° to the left, which is $\cos \theta$ $\sin \left(\theta-90^{\circ}\right)$ is $\sin \theta$ translated 90° to the right, which is $-\cos \theta$ $\cos \left(\theta+90^{\circ}\right)$ is $\cos \theta$ translated 90° to the left, which is $-\sin \theta$ $\cos \left(\theta-90^{\circ}\right)$ is $\cos \theta$ translated 90° to the right, which is $\sin \theta$
(3) As $\sin \theta=\sin \left(180^{\circ}-\theta\right)$, we have to be careful when using the Sine rule to determine angles in a triangle that are close to 90°. Instead, either find small angles first, or use the Cosine rule instead.

Example

$c^{2}=11^{2}+8^{2}-2(11)(8) \cos 30^{\circ}$, giving $c=5.70785$
Now $\frac{\sin B}{11}=\frac{\sin 30^{\circ}}{5.70785} \Rightarrow \sin B=0.96359 \Rightarrow B=74.5^{\circ}$ or 105.5°
But $\frac{\sin A}{8}=\frac{\sin 30^{\circ}}{5.70785} \Rightarrow \sin A=0.70079$
$\Rightarrow A=44.5^{\circ}($ not $180-44.5)$
$\Rightarrow B=180-30-44.5=105.5^{\circ}$
(4) To solve eg $\sin \left(2 x-60^{\circ}\right)=0.5 ; 0 \leq x \leq 360^{\circ}$:

Let $u=2 x-60^{\circ}$ and note that $-60^{\circ} \leq u \leq 660^{\circ}$
Having found the solutions for u (such that $-60^{\circ} \leq u \leq 660^{\circ}$), the solutions for x are obtained from $x=\frac{1}{2}(u+60)$.
(5) Starting with $\cos ^{2} \theta+\sin ^{2} \theta=1$ (A) and $\cos ^{2} \theta-\sin ^{2} \theta=\cos 2 \theta(B)$,
$\frac{1}{2}[(A)+(B)] \Rightarrow \cos ^{2} \theta=\frac{1}{2}(1+\cos 2 \theta)$
and $\frac{1}{2}[(A)-(B)] \Rightarrow \sin ^{2} \theta=\frac{1}{2}(1-\cos 2 \theta)$
(6)(a) In order for $y=\arcsin x\left(\right.$ or $\left.\sin ^{-1} x\right)$ to be a function, the range of the inverse of $y=\sin x$ is restricted to $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
(To avoid vertical duplication for $y=\arcsin x$, we ensure that there is no horizontal duplication for $y=\sin x$.)

Then $\sin x=a \Rightarrow$
$x=\arcsin (a)+n(2 \pi)$ or $\pi-\arcsin (a)+n(2 \pi)$ for $n \in \mathbb{Z}$
Alternatively, $x=n \pi+(-1)^{n} \arcsin (a)$
[For even multiples of π, we go forward along the curve, and for odd multiples we go back - see the diagram below.]

(b) In order for $y=\arctan x\left(\right.$ or $\tan ^{-1} x$) to be a function, the range of the inverse of $y=\tan x$ is also restricted to $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ Then $\tan x=a \Rightarrow x=\arctan (a)+n \pi$ for $n \in \mathbb{Z}$
(c) In order for $y=\arccos x$ (or $\cos ^{-1} x$) to be a function, the range of the inverse of $y=\cos x$ is restricted to $\left[0, \frac{\pi}{2}\right]$
(avoiding horizontal duplication for $y=\cos x$)
Then $\cos x=a \Rightarrow$
$x=\arccos (a)+n(2 \pi)$ or $2 \pi-\arccos (a)+n(2 \pi)$ for $n \in \mathbb{Z}$ [The 2 nd option can also be written as $-\arccos (a)+n^{\prime}(2 \pi)$]

Alternatively, $x=2 n \pi \pm \arccos (a)$
(7) Angle Bisector Theorem

Referring to the diagram below, the Angle Bisector theorem says that
$\frac{B D}{D C}=\frac{A B}{A C}$

Proof

Method 1

By the Sine rule for triangle $\mathrm{ABD}, \frac{B D}{\sin \theta}=\frac{A B}{\sin A D B}$
and, for triangle $\mathrm{ADC}, \frac{D C}{\sin \theta}=\frac{A C}{\sin A D C}=\frac{A C}{\sin A D B}$ (2)
Then (1) $\Rightarrow \frac{\sin \theta}{\sin A D B}=\frac{B D}{A B}$ and (2) $\Rightarrow \frac{\sin \theta}{\sin A D B}=\frac{D C}{A C}$
so that $\frac{B D}{A B}=\frac{D C}{A C}$
and hence $\frac{B D}{D C}=\frac{A B}{A C}$

Method 2

Area of triangle $\mathrm{ABD} \div$ Area of triangle $\mathrm{ADC}=\frac{\frac{1}{2} A B \cdot A D \sin \theta}{\frac{1}{2} A C \cdot A D \sin \theta}=\frac{A B}{A C}$
Also,
Area of triangle $\mathrm{ABD} \div$ Area of triangle $\mathrm{ADC}=\frac{\frac{1}{2} B D \cdot A D \sin B D A}{\frac{1}{2} A D \cdot D C \sin A D C}=\frac{B D}{D C}$, as $\angle B D A=180-\angle A D C$, so that $\sin B D A=\sin A D C$ Hence, $\frac{A B}{A C}=\frac{B D}{D C}$

