Trigonometry Q9 (30/6/23)

Sketch $y=\sin \left(2 x+30^{\circ}\right)$

Solution
This is a composite transformation of $y=\sin x$, and we have a choice of two approaches:
(i) $y=\sin x \rightarrow y=\sin 2 x \quad$ [stretch of factor $\frac{1}{2}$ in the x-direction]

$\rightarrow y=\sin \left(2\left[x+15^{\circ}\right]\left[\right.\right.$ translation of 15° to the left]
$=\sin \left(2 x+30^{\circ}\right)$

(ii) $y=\sin x \rightarrow y=\sin \left(x+30^{\circ}\right)$ [translation of 30° to the left]

$\rightarrow y=\sin (2 x+30)$ [stretch of factor $\frac{1}{2}$ in the x-direction]

Note that, in the above transformation, the graph 'pivots' about $x=0$; ie $\sin \left(2 x+30^{\circ}\right)=\sin \left(x+30^{\circ}\right)$ at $x=0$.

You may find approach (i) easier to carry out.

