Trigonometry Q8 (30/6/23)

Show that each of (i)-(vi) is true, by two methods:
(a) using the results (A)-(E) below
(b) from graphs
(i) $\sin (\theta+180)=-\sin \theta$
(ii) $\cos (180-\theta)=\cos (180+\theta)$
(iii) $\cos (90-\theta)=-\cos (90+\theta)$
(iv) $\sin (\theta-180)=\cos (\theta+90)$
(v) $\sin (\theta+90)=\cos \theta$
(vi) $\sin (360-\theta)$
(A) $\sin (-\theta)=-\sin \theta$
(B) $\sin (360+\theta)=\sin \theta$
(C) $\sin (180-\theta)=\sin \theta$
(D) $\sin \theta=\cos (90-\theta)$
(E) $\cos (-\theta)=\cos \theta$

Solution

(i)(a) $\sin (\theta+180)=\sin (\theta+180-360)=\sin (\theta-180)$
$=-\sin (180-\theta)=-\sin \theta$
(b) Starting with the graph of $y=\sin \theta, y=\sin (\theta+180)$ is
obtained by a translation of 180° to the left, and this can be seen to be the graph of $y=-\sin \theta$.
(ii) $(\mathrm{a}) \cos (180-\theta)=\cos (\theta-180)=\cos (\theta-180+360)$
$=\cos (180+\theta)$
(b) Starting with the graph of $y=\cos \theta, y=\cos (\theta+180)$ is
obtained by a translation of 180° to the left, and this can be seen to have symmetry about the y-axis, so that replacing θ by $-\theta$ has no effect; ie $\cos (\theta+180)=\cos (-\theta+180)=\cos (180-\theta)$
(iii)(a) $\cos (90-\theta)=\sin \theta=-\sin (-\theta)=-\cos (90-[-\theta])$
$=-\cos (90+\theta)$
(b) The graph of $y=\cos (90-\theta)$ can be obtained from $y=\cos \theta$ by a reflection in the y-axis (having no effect), to give $y=\cos (-\theta)$, followed by a translation of 90° to the right (replacing θ with $\theta-90)$, to give $y=\cos (-(\theta-90)$)
$=\cos (90-\theta)($ see diagram below $)$.

Then the graph of $y=-\cos (90+\theta)$ can be obtained from $y=\cos \theta$ by a translation of 90° to the left, to give $y=\cos (\theta+90)$, followed by a reflection in the x-axis, to give $y=-\cos (\theta+90)=-\cos (90+\theta)$ (see diagram below).

And the graphs of $y=\cos (-(\theta-90))$ and $y=-\cos (\theta+90)$ are seen to be the same from these diagrams.
(iv)(a) $\sin (\theta-180)=\sin (\theta-180+360)=\sin (\theta+180)$
$=\cos (90-[\theta+180])=\cos (-\theta-90)=\cos (-[-\theta-90])$
$=\cos (\theta+90)$
(b) The graph of $y=\sin (\theta-180)$ can be obtained from
$y=\sin \theta$ by a translation of 180° to the right, whilst the graph of $y=\cos (\theta+90)$ can be obtained from $y=\cos \theta$ by a translation of 90° to the left. The resulting graphs can be seen to be the same.

$$
(\mathrm{v})(\mathrm{a}) \sin (\theta+90)=\cos (90-[\theta+90])=\cos (-\theta)=\cos \theta
$$

(b) The graph of $y=\sin (\theta+90)$ can be obtained from
$y=\sin \theta$ by a translation of 90° to the left, which gives the graph of $y=\cos \theta$.
(vi)(a) $\sin (360-\theta)=\sin (-\theta)=-\sin \theta$
(b) Starting at 360 and moving θ to the left gives the same absolute value for $\sin \theta$ as starting from 0 and moving θ to the right, with just a change of sign.

