Trigonometry Q8 (30/6/23)

Show that each of (i)-(vi) is true, by two methods:

(a) using the results (A)-(E) below (b) from graphs (i) $sin(\theta + 180) = -sin\theta$ (ii) $cos(180 - \theta) = cos(180 + \theta)$ (iii) $cos(90 - \theta) = -cos(90 + \theta)$ (iv) $sin(\theta - 180) = cos(\theta + 90)$ (v) $sin(\theta + 90) = cos\theta$ (vi) $sin(360 - \theta)$

(A) $sin(-\theta) = -sin\theta$ (B) $sin(360 + \theta) = sin\theta$ (C) $sin(180 - \theta) = sin\theta$ (D) $sin\theta = cos (90 - \theta)$ (E) $cos(-\theta) = cos\theta$

Solution

(i)(a)
$$sin(\theta + 180) = sin(\theta + 180 - 360) = sin(\theta - 180)$$

= $-sin(180 - \theta) = -sin\theta$

(b) Starting with the graph of $y = sin\theta$, $y = sin(\theta + 180)$ is obtained by a translation of 180° to the left, and this can be seen to be the graph of $y = -sin\theta$.

(ii)(a)
$$cos(180 - \theta) = cos(\theta - 180) = cos(\theta - 180 + 360)$$

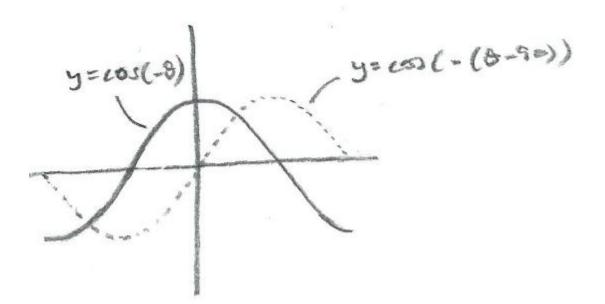
= $cos(180 + \theta)$

(b) Starting with the graph of $y = cos\theta$, $y = cos(\theta + 180)$ is obtained by a translation of 180° to the left, and this can be seen to have symmetry about the *y*-axis, so that replacing θ by $-\theta$ has no effect; ie $cos(\theta + 180) = cos(-\theta + 180) = cos(180 - \theta)$

(iii)(a)
$$cos(90 - \theta) = sin\theta = -sin(-\theta) = -cos(90 - [-\theta])$$

= $-cos(90 + \theta)$

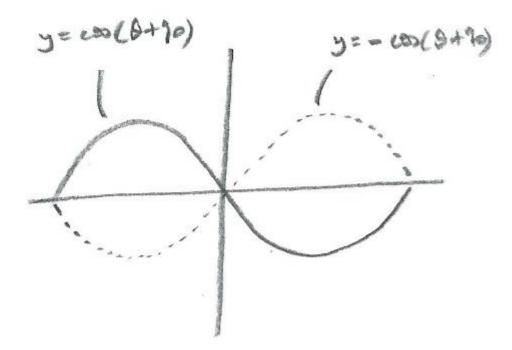
(b) The graph of $y = cos(90 - \theta)$ can be obtained from $y = cos\theta$ by a reflection in the *y*-axis (having no effect), to give $y = cos(-\theta)$, followed by a translation of 90° to the right (replacing θ with $\theta - 90$), to give $y = cos(-(\theta - 90))$ $= cos(90 - \theta)$ (see diagram below).



Then the graph of $y = -\cos(90 + \theta)$ can be obtained from $y = \cos\theta$ by a translation of 90° to the left, to give $y = \cos(\theta + 90)$, followed by a reflection in the *x*-axis, to give $y = -\cos(\theta + 90) = -\cos(90 + \theta)$

(see diagram below).

fmng.uk



And the graphs of $y = \cos(-(\theta - 90))$ and $y = -\cos(\theta + 90)$ are seen to be the same from these diagrams.

(iv)(a)
$$sin(\theta - 180) = sin(\theta - 180 + 360) = sin(\theta + 180)$$

= $cos(90 - [\theta + 180]) = cos(-\theta - 90) = cos(-[-\theta - 90])$
= $cos(\theta + 90)$

(b) The graph of $y = sin(\theta - 180)$ can be obtained from $y = sin\theta$ by a translation of 180° to the right, whilst the graph of $y = cos(\theta + 90)$ can be obtained from $y = cos\theta$ by a translation of 90° to the left. The resulting graphs can be seen to be the same.

$$(v)(a) sin(\theta + 90) = cos (90 - [\theta + 90]) = cos(-\theta) = cos\theta$$

(b) The graph of $y = sin(\theta + 90)$ can be obtained from

 $y = sin\theta$ by a translation of 90° to the left, which gives the graph

of $y = cos\theta$.

 $(vi)(a) \sin(360 - \theta) = \sin(-\theta) = -\sin\theta$

(b) Starting at 360 and moving θ to the left gives the same absolute value for $sin\theta$ as starting from 0 and moving θ to the right, with just a change of sign.