Trigonometry - Exercises: Part 1 (Sol'ns) (11 pages; 6/2/20)

 (1^{***}) Solve the equation sinx - cosx = 0.5, $for 0^{\circ} < x < 360^{\circ}$

Solution

Method 1

Write $sinx - cosx = Rsin(x - \alpha) = R(sinxcos\alpha - cosxsin\alpha)$, so that $Rcos\alpha = 1 \& Rsin\alpha = 1$,

and hence $R^2(\cos^2\alpha + \sin^2\alpha) = 2$, so that $R = \sqrt{2}$

Also $tan\alpha = 1$, so that $\alpha = 45^{\circ}$ (for example).

Thus the original equation becomes $\sqrt{2}sin(x-45^\circ)=0.5$

Then let $u = x - 45^{\circ}$, so that $-45^{\circ} < u < 315^{\circ}$

$$sinu = \frac{1}{2\sqrt{2}} \Rightarrow u = 20.70481 \text{ or } 180 - 20.70481$$

(and there are no other solutions within the range for u)

So
$$x = u + 45^{\circ} = 65.7^{\circ} \text{ or } 204.3^{\circ} \text{ (1dp)}$$

Method 2

$$sinx - cosx = 0.5 \Rightarrow tanx - 1 = 0.5secx$$

$$\Rightarrow (tanx - 1)^2 = \frac{sec^2x}{4} ,$$

if we exclude solutions of tanx - 1 = -0.5secx

$$\Rightarrow 4(tan^2x - 2tanx + 1) = 1 + tan^2x$$

$$\Rightarrow 3tan^2x - 8tanx + 3 = 0$$

$$\Rightarrow tanx = \frac{8 \pm \sqrt{28}}{6} = \frac{1}{3} (4 \pm \sqrt{7}) = 2.21525 \text{ or } 0.45142$$

$$\Rightarrow x = 65.7^{\circ} \text{ or } 24.3^{\circ}$$

as well as $65.7 + 180 = 245.7^{\circ}$ and $24.3 + 180 = 204.3^{\circ}$

But 24.3° and 245.7° are solutions of tanx - 1 = -0.5secx and can therefore be excluded.

Thus the solutions are $x = 65.7^{\circ} \text{ or } 204.3^{\circ}$

Method 3

$$\sin x - \cos x = 0.5 \Rightarrow \sin^2 x = (\cos x + 0.5)^2$$

but this will include solutions of -sinx - cosx = 0.5, which will need to be removed

$$\Rightarrow 1 - \cos^2 x = \cos^2 x + \cos x + \frac{1}{4}$$

$$\Rightarrow 2\cos^2 x + \cos x - \frac{3}{4} = 0$$

$$\Rightarrow 8\cos^2 x + 4\cos x - 3 = 0$$

$$\Rightarrow cosx = \frac{-4 \pm \sqrt{16 + 96}}{16} = \frac{-1 \pm \sqrt{7}}{4} = -0.91144 \text{ or } 0.41144$$

$$\Rightarrow x = 155.7^{\circ}, 360 - 155.7 = 204.3^{\circ}, 65.7^{\circ}$$

$$or 360 - 65.7 = 294.3^{\circ}$$

The only solutions of the required equation are

$$x = 65.7^{\circ}$$
 and 204.3°

(the other two are found to be solutions of -sinx - cosx = 0.5)

Method 4

 $t = tan\left(\frac{x}{2}\right) \Rightarrow cosx = \frac{1-t^2}{1+t^2} \& sinx = \frac{2t}{1+t^2}$ (standard results - see "Trigonometry - Part 2")

Then, substituting into our equation:

$$\frac{2t}{1+t^2} - \frac{1-t^2}{1+t^2} = \frac{1}{2}$$

$$\Rightarrow 2\{2t - (1-t^2)\} = 1 + t^2 \Rightarrow t^2 + 4t - 3 = 0$$

$$\Rightarrow t = \frac{-4 \pm \sqrt{28}}{2} = -2 \pm \sqrt{7} = 0.64575 \text{ or } -4.64575$$

$$\Rightarrow \frac{x}{2} = 32.852^{\circ} \text{ or } -77.852^{\circ} + 180^{\circ}$$

(these are the only values between 0° and 180° , which is the permissible range for $\frac{x}{2}$)

and hence $x = 65.7^{\circ} \text{ or } 204.3^{\circ} \text{ (1dp)}$

(2**) Given that
$$cos^5\theta = \frac{1}{16}(cos5\theta + 5cos3\theta + 10cos\theta)$$
 and $cos^6\theta = \frac{1}{32}(cos6\theta + 6cos4\theta + 15cos2\theta + 10)$,

find expressions for $sin^5\theta$ and $sin^6\theta$

Solution

$$sin^{5}\theta = cos^{5}\left(\frac{\pi}{2} - \theta\right)$$

$$= \frac{1}{16}\left(cos\left[5\left(\frac{\pi}{2} - \theta\right)\right] + 5cos\left[3\left(\frac{\pi}{2} - \theta\right)\right] + 10cos\left(\frac{\pi}{2} - \theta\right)\right)$$

$$= \frac{1}{16}\left(cos\left[\frac{\pi}{2} - 5\theta\right] + 5cos\left[-\frac{\pi}{2} - 3\theta\right] + 10sin\theta\right)$$

$$= \frac{1}{16}\left(sin 5\theta + 5cos\left(\frac{\pi}{2} + 3\theta\right) + 10sin\theta\right)$$

$$= \frac{1}{16} (\sin 5\theta + 5\cos(\frac{\pi}{2} - [-3\theta]) + 10\sin\theta)$$

$$= \frac{1}{16} (\sin 5\theta + 5\sin(-3\theta) + 10\sin\theta)$$

$$= \frac{1}{16} (\sin 5\theta - 5\sin 3\theta + 10\sin\theta)$$
And $\sin^6 \theta = \cos^6(\frac{\pi}{2} - \theta)$

$$= \frac{1}{32} (\cos[6(\frac{\pi}{2} - \theta)] + 6\cos[4(\frac{\pi}{2} - \theta)] + 15\cos[2(\frac{\pi}{2} - \theta)] + 10)$$

$$= \frac{1}{32} (\cos(\pi - 6\theta) + 6\cos(-4\theta) + 15\cos(\pi - 2\theta) + 10)$$

$$= \frac{1}{32} (-\cos 6\theta + 6\cos 4\theta - 15\cos 2\theta + 10)$$

(3**) Express $-\cos\theta$ in the form $\cos\alpha$ (where α is to be found in terms of θ), using an algebraic method.

Solution

$$-\cos\theta = -\sin\left(\frac{\pi}{2} - \theta\right) = \sin\left(\theta - \frac{\pi}{2}\right)$$

$$= \cos\left(\frac{\pi}{2} - \left[\theta - \frac{\pi}{2}\right]\right) = \cos(\pi - \theta) \quad (\text{or } \cos(3\pi - \theta) \text{ etc})$$
Alternatively,
$$-\cos\theta = -\cos(-\theta) = -\sin\left(\frac{\pi}{2} - \left[-\theta\right]\right)$$

$$= \sin\left(-\frac{\pi}{2} - \theta\right) = \cos\left(\frac{\pi}{2} - \left[-\frac{\pi}{2} - \theta\right]\right) = \cos(\pi + \theta)$$

$$(\text{or } \cos(3\pi + \theta) \text{ etc})$$

(4**) Simplify
$$\sqrt{2(1-\cos\theta)}$$
 and $\sqrt{2(1+\cos\theta)}$

Solution

$$\cos\theta = \cos^2(\theta/2) - \sin^2(\theta/2) = 1 - 2\sin^2(\theta/2)$$

fmng.uk

so that
$$1 - \cos\theta = 2\sin^2(\theta/2)$$
 and $\sqrt{2(1 - \cos\theta)} = 2\sin(\theta/2)$

Also,
$$\cos 2\theta = \cos^2 \theta - \sin^2 \theta = 2\cos^2 \theta - 1$$
, so that

$$1 + \cos\theta = 2\cos^2\left(\frac{\theta}{2}\right)$$
 and $\sqrt{2(1 + \cos\theta)} = 2\cos\left(\frac{\theta}{2}\right)$

(5***) Show that

(i)
$$\cos^4 \theta - \sin^4 \theta = \cos 2\theta$$

(ii)
$$\cos^4 \theta + \sin^4 \theta = 1 - \frac{1}{2} \sin^2(2\theta)$$

Solution

(i)
$$\cos^4 \theta - \sin^4 \theta = (\cos^2 \theta - \sin^2 \theta)(\cos^2 \theta + \sin^2 \theta)$$

= $\cos^2 \theta = \cos^2 \theta$

(ii) Consider

$$1 = (\cos^2\theta + \sin^2\theta)^2 = \cos^4\theta + \sin^4\theta + 2\cos^2\theta\sin^2\theta$$
Then $\cos^4\theta + \sin^4\theta = 1 - 2\cos^2\theta\sin^2\theta = 1 - \frac{1}{2}(2\cos\theta\sin\theta)^2$

$$= 1 - \frac{1}{2}\sin^2(2\theta)$$
, as required.

$$(6^{**})$$
 Sketch $y = \sin(2x + 30^{\circ})$

Solution

This is a composite transformation of y = sinx, and we have a choice of two approaches:

(i)
$$y = sinx \rightarrow y = sin2x$$
 [stretch of factor $\frac{1}{2}$ in the *x*-direction]

 $\rightarrow y = \sin(2[x + 15^{\circ}])$ [translation of 15° to the left]

$$= \sin(2x + 30^\circ)$$

(ii) $y = sinx \rightarrow y = sin(x + 30^\circ)$ [translation of 30° to the left]

 $\rightarrow y = \sin(2x + 30)$ [stretch of factor $\frac{1}{2}$ in the *x*-direction]

Note that, in the above transformation, the graph 'pivots' about x = 0; ie $\sin(2x + 30^\circ) = \sin(x + 30^\circ)$ at x = 0.

You may find approach (i) easier to carry out.

 (7^*) If $sin\theta = 0.6$, where $0 \le \theta < 360^\circ$, find $tan\theta$

Solution

$$tan\theta = \frac{sin\theta}{cos\theta} = \frac{sin\theta}{\pm\sqrt{1-sin^2\theta}} = \frac{\pm0.6}{0.8} = \pm\frac{3}{4}$$
 (or draw graphs)

- (8**) Show that each of (i)-(v) is true, by two methods:
- (a) using the results (A)-(E) below
- (b) applying translations and/or reflections to graphs

(i)
$$sin(\theta + 180) = -sin\theta$$

(ii)
$$cos(180 - \theta) = cos(180 + \theta)$$

(iii)
$$cos(90 - \theta) = -cos(90 + \theta)$$

(iv)
$$sin(\theta - 180) = cos(\theta + 90)$$

(v)
$$sin(\theta + 90) = cos\theta$$

(A)
$$sin(-\theta) = -sin\theta$$

(B)
$$sin(360 + \theta) = sin\theta$$

(C)
$$sin(180 - \theta) = sin\theta$$

(D)
$$sin\theta = cos(90 - \theta)$$

(E)
$$cos(-\theta) = cos\theta$$

Solution

(i)(a)
$$sin(\theta + 180) = sin(\theta + 180 - 360) = sin(\theta - 180)$$

= $-sin(180 - \theta) = -sin\theta$

(b) Starting with the graph of $y = sin\theta$, $y = sin(\theta + 180)$ is obtained by a translation of 180° to the left, and this can be seen to be the graph of $y = -sin\theta$.

(ii)(a)
$$cos(180 - \theta) = cos(\theta - 180) = cos(\theta - 180 + 360)$$

= $cos(180 + \theta)$

(b) Starting with the graph of $y = cos\theta$, $y = cos(\theta + 180)$ is obtained by a translation of 180° to the left, and this can be seen to have symmetry about the y-axis, so that replacing θ by $-\theta$ has no effect; ie $cos(\theta + 180) = cos(-\theta + 180) = cos(180 - \theta)$

(iii)(a)
$$cos(90 - \theta) = sin\theta = -sin(-\theta) = -cos(90 - [-\theta])$$

= $-cos(90 + \theta)$

(b) The graph of $y = cos(90 - \theta)$ can be obtained from $y = cos\theta$ by a reflection in the y-axis (having no effect), to give $y = cos(-\theta)$, followed by a translation of 90° to the right (replacing θ with $\theta - 90$), to give $y = cos(-(\theta - 90))$ = $cos(90 - \theta)$ (see diagram below).

Then the graph of $y = -cos(90 + \theta)$ can be obtained from $y = cos\theta$ by a translation of 90° to the left, to give $y = cos(\theta + 90)$, followed by a reflection in the x-axis, to give $y = -cos(\theta + 90) = -cos(90 + \theta)$ (see diagram below).

And the graphs of $y = \cos(-(\theta - 90))$ and $y = -\cos(\theta + 90)$ are seen to be the same from these diagrams.

(iv)(a)
$$sin(\theta - 180) = sin(\theta - 180 + 360) = sin(\theta + 180)$$

= $cos(90 - [\theta + 180]) = cos(-\theta - 90) = cos(-[-\theta - 90])$

$$= cos(\theta + 90)$$

- (b) The graph of $y = sin(\theta 180)$ can be obtained from $y = sin\theta$ by a translation of 180° to the right, whilst the graph of $y = cos(\theta + 90)$ can be obtained from $y = cos\theta$ by a translation of 90° to the left. The resulting graphs can be seen to be the same.
- (v)(a) $sin(\theta + 90) = cos(90 [\theta + 90]) = cos(-\theta) = cos\theta$
- (b) The graph of $y = sin(\theta + 90)$ can be obtained from $y = sin\theta$ by a translation of 90° to the left, which gives the graph of $y = cos\theta$.