
 fmng.uk

1

Travelling Salesman Problem (15/1/2014)

Finding the shortest sequence of arcs that visits each node at least

once, returning to the starting point.

Figure 1

For a complete graph, such as 𝐾5 in Figure 1, it is always possible

to find a cycle (ie a closed path that doesn't repeat arcs or nodes)

that visits each node exactly once. Such a cycle is referred to as a

Hamiltonian cycle, and the travelling salesman problem is often

expressed in the stronger form of requiring the sequence of arcs

to be a Hamiltonian cycle. A Hamiltonian cycle is also called a

'tour'.

Figure 2

 fmng.uk

2

Figure 2 shows a graph (or 'network', as it has weights) which

contains no Hamiltonian cycles. In this case, the travelling

salesman problem can only be solved by permitting both arcs and

nodes to be repeated.

Figure 3

For figure 3, a Hamiltonian cycle exists, but it clearly doesn't give

the best solution. It would be better to voluntarily repeat arcs and

nodes.

If we are insisting on only following Hamiltonian cycles then the

problem is termed the 'Classical' problem; otherwise it is referred

to as the 'Practical' problem. In the latter case, the only

requirement is for each node to be visited at least once (as well as

returning to the starting point).

Some of the methods described below for finding the best

solution may only be applicable to one or other of these types of

problem. However, it will be seen that the Practical problem can

always be expressed in the form of a Classical problem, thereby

making extra methods available.

If a graph is complete and has n nodes, then there will be
1

2
(𝑛 − 1)! possible tours. (We can choose to start at any node

 fmng.uk

3

(since the tour is circular), and there will be 𝑛 − 1 ways of

choosing the next node to proceed to (and so on). We divide by 2

because reversing the order gives the same tour; eg ABCDEA is

the same as AEDCBA.

The travelling salesman problem thus has factorial complexity,

and computers cannot simply examine all the possibilities if n is

even of moderate size:

𝑛 = 5: 12 tours

𝑛 = 10: 181 440 tours

𝑛 = 15: 4.4 × 1010 tours

Unfortunately no algorithm exists for the travelling salesman

problem which can determine the optimal solution. The best that

can be done is to establish upper and lower bounds for the

shortest length, and then to try and refine these, so that the

optimal value is shown to lie within a small enough interval; ie

such that no significant improvement will be obtained from

further work.

 fmng.uk

4

Figure 4

Referring to the cities example in Figure 4, three possibilities

(with their total lengths) are:

BYOCLB (211+181+83+54+115=644)

BYCOLB (211+150+83+57+115=616)

BOYCLB (74+181+150+54+115=574)

The following systematic methods can be applied to tackle the

problem.

Upper Bound

For the Practical problem, we can start by establishing an upper

bound for the shortest length.

The steps are as follows:

(1) Find a minimum connector for the whole network.

(2) Duplicate each of the arcs.

This is carried out below for the cities network in Figure 4.

 fmng.uk

5

Figure 5

Figure 6

Upper bound = (74+57+54+150)x2=670

Lower Bound

[This method is only guaranteed to work if the network is

complete.]

Referring to Figure 4, any Hamiltonian cycle will consist of 2 arcs

from (eg) B, together with 3 arcs linking O, L, C & Y.

 fmng.uk

6

The minimum total length of 2 arcs from B is 74+115=189

To find the minimum total length of arcs linking O, L, C & Y, we

can find the minimum connector for these nodes. This is done

below by three methods.

Prim's Algorithm

eg starting at O:

OL(57)

OL(57)+LC(54)

OL(57)+LC(54)+CY(150) = 261

Kruskal's Algorithm

LC(54)

LC(54)+LO(57)

LC(54)+LO(57)+CY(150) = 261

Removing the longest arcs:

(181+150+83+57+54)-181-83 = 261

Hence the lower bound is 189+261=450

Further lower bounds can be established by dividing up the nodes

differently. Using Kruskal's algorithm gives:

O + BLCY

(57+74)+(54+115+150)=450

L + BOCY

 fmng.uk

7

(54+57)+(74+83+150)=418

C + BOLY

(54+83)+(57+74+181)=449

Y + BOLC

(150+181)+(54+57+74)=516

The figure of 516 supersedes the other, lower figures (although it

is still true that the shortest tour can't be lower than 418, it is also

true that it can't be lower than 516).

Nearest Neighbour Algorithm

This is another way of producing an upper bound, as the

algorithm finds a tour that works; ie the shortest possible tour

will have a length less than or equal to the value obtained.

The method is only guaranteed to work if the network is

complete.

Referring to Figure 4,

(1) Start at any node (eg B)

(2) Add the shortest arc leading to a new node: BO

(3) Repeat the process, to give: BO+OL+LC+CY

(4) Return directly to the start node, to give the cycle:

BOLCYB (74+57+54+150+211=546)

(5) Repeat the algorithm, with other starting points:

OLCYBO (57+54+150+211+74=546)

LCOBY: can't return to L

 fmng.uk

8

CLOBY: can't return to C

YCLOBY (150+54+57+74+211=546)

In general we would take the lowest of the figures obtained.

The Nearest Neighbour algorithm resembles Prim's algorithm.

However Prim's algorithm joins the nearest new node to any

existing node, whereas the Nearest Neighbour algorithm joins it

to the last node obtained. Also, Prim's algorithm is designed to

produce a tree and we don't return to the start node.

Notes on the Nearest Neighbour Algorithm

(i) It is a 'greedy' algorithm: it doesn't look ahead, and just

maximises the short-term gain (by selecting the nearest node).

This is similar to a chess player who sees that a piece can be

taken, without considering the longer-term consequences.

(ii) As seen above, it doesn't always work.

(iii) Although the solution will usually be much better than for the

"Upper Bound" method described earlier, the Nearest Neighbour

algorithm doesn't usually give the best possible solution.

Improving on the Upper Bound

The 'Upper Bound' method can usually be improved on

significantly by taking one or more shortcuts.

Referring to Figure 6, we start with BOLCYCLOB:

(74 + 57 + 54 + 150) × 2 = 335 × 2 = 670

This can be replaced with

 fmng.uk

9

BOLCYCOB: 335 + 150 + 83 + 74 = 642

or with BOLCYOB: 335 + 181 + 74 = 590

or with BOLCYB: 335 + 211 = 546

In this case, we have succeeded in bringing the value down to that

obtained by the Nearest Neighbour algorithm.

So far we have 'trapped' the shortest possible tour between 516

and 546. However there is no guarantee that a shorter tour than

546 exists.

Tour improvement algorithm

This can be illustrated by referring to Figure 4 again. The three

possibilities that were mentioned earlier were:

BYOCLB (211+181+83+54+115=644)

BYCOLB (211+150+83+57+115=616)

BOYCLB (74+181+150+54+115=574)

Note that BYOCLB is improved by swapping O and C, or by

swapping Y and O.

The algorithm consists of examining each sequence of 4 nodes,

and seeing if an improvement can be obtained by swapping the

middle two nodes.

Thus, for the above example, YCOL gives a shorter distance than

YOCL, and BOYC gives a shorter distance than BYOC.

Using computer language, the algorithm could be written as:

 fmng.uk

10

For i = 1 to n

If 𝑑(𝑁𝑖 , 𝑁𝑖+2) + 𝑑(𝑁𝑖+1, 𝑁𝑖+3) < 𝑑(𝑁𝑖 , 𝑁𝑖+1) + 𝑑(𝑁𝑖+2, 𝑁𝑖+3) then

swap 𝑁𝑖+1& 𝑁𝑖+2

Next i

(where 𝑁𝑖 denotes the 𝑖th node, and d denotes distance).

Converting from the practical problem to the classical

problem

For the network in Figure 2, no Hamiltonian cycle exists. We may

wish to convert this network into a complete network; eg in order

to be able to use the Nearest Neighbour algorithm (which is only

guaranteed to work if the network is complete).

This can be done by creating the network of shortest distances, as

in Figure 7 below.

Figure 7

(Thus A is now connected directly to C by an arc of weight equal

to the shortest distance between A and C in the original network.)

 fmng.uk

11

Note that, although the Practical problem has been converted to

the Classical problem, we are not pretending that the solution

obtained won't involve repeating nodes in the original network.

We may also wish to 'voluntarily' use the network of shortest

distances. For example, in Figure 3 we saw that the Hamiltonian

cycle ABC does not give the best solution. Figure 8 below shows

the equivalent network of shortest distances, to which the

Classical problem can be applied (though clearly in this simple

case there is no need to apply any of the methods described in

this note).

Figure 8

